• Title/Summary/Keyword: Corrosion solution

Search Result 1,288, Processing Time 0.025 seconds

The Study on the Influence of the Concentration NaCl Solution on Corrosion Fatigue Behavior of T.M.C.P. Steel (T.M.C.P. 강의 부식피로거동에 미치는 염분의 영향에 관한 연구)

  • 이상호;한정섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-140
    • /
    • 1993
  • To study the corrosion fatigue begavior of T.M.C.P. steel, the rotary bending fatigue test with the change of concentration of NaCl solution was carried out. Fatigue life in the corrosion environment is decreased markedly in comparision with that in the air. Fatigue limit in the air was about 225 MPa. In case of 3.5% NaCl solution fatigue life could be expressed as .sigma./sub f/=10,392 * (N/sub f/)/sup -o.2923 . According to the paris's rule, crack growth rates could be expressed as da/dN=2.62.*10/sup -7/ .DELTA. K/sup 1.09/(3.5% NaCl solution), da/dN=1.95 *10/sup -7 .DELTA. K/sup 1.05/(1% NaCl solution), da/dN=2.62 * 10/sup -7/.DELTA./sup 0.72/(0.01% NaCl solution) with da/dN expressed in mm/cycle and .DELTA.K in MPa.GAMMA.m. The crack growth rate in the corrosion environment was highest under 3.5% NaCl solution.

  • PDF

Evaluation of Corrosion Fatigue Life of TMCP Steel Using the DCPD Method (DCPD 법을 이용한 TMCP 강의 부식피로수명 평가)

  • Park, Jin-Hyung;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.220-225
    • /
    • 2003
  • In order to develop a method of corrosion fatigue design and estimate reliability of TMCP steel using as the material of heavy industries and plants, its corrosion susceptibilities and corrosion fatigue life considering corrosion degradation were investigated. From the results, the corrosion characteristic of TMCP steel is very susceptible in 3.5wt.% NaCl solution. Its susceptibility was linearly increased with the solution temperature increase. The potential difference due to the crack growth behavior in $25^{\circ}C$, 3.5wt.% NaCl solution is very susceptible. And it was found that stress amplitude has a linear relationship with the critical potential. Therefore, it is expected that the corrosion fatigue life of TMCP steel can be nondestructively predicted using the DCPD method.

  • PDF

Corrosion Resistance of Cold Rolled Steel by Organic/Inorganic Hybrid Solution according to Composition of SiO2 polysilicate and Melamine (SiO2 polysilicate 및 Melamine 조성에 따른 유/무기하이브리드 용액에 의한 자동차용 냉연강판의 내식성)

  • Nam, Ki-Woo;Jeong, Hee-Rok;Ahn, Byung-Gun;Lee, Kwang-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.20-28
    • /
    • 2016
  • This study has developed an organic/inorganic hybrid solution by addition of $SiO_2$ polysilicate and Melamine to the urethane. The three types of cold rolled steel were evaluated a corrosion resistance properties by using these solutions. The urethane solution(U) and the urethane solution with $SiO_2$ polysilicate($US_7$) were generate a lot of corrosion. The urethane solution with $SiO_2$ polysilicate and melamine($US_7M_3$) was excellent in corrosion resistance, regardless of the steel type. In addition, corrosion resistance has been shown to depend on the tensile strength. The appearance of coating by U and $US_7$ solution is bumpy surface, and were a lot of fine defects. $US_7M_3$ solution is made a sophisticated molecular cross-linking structure inside the coating, it was a slick surface. Other characteristics are exhibited the excellent property for all solutions.

Study on the Crevice Corrosion Behavior of SS 400 in Marine Environment (해양환경중에서 SS400강재의 간극부식거동에 관한 연구)

  • 임우조;정기철;안석환;윤병두
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.1-6
    • /
    • 2000
  • This paper was studied on the crevice corrosion behavior of SS 400 in marine environment. In 0%, 2%, 3.5%, 5% NaCl solution, the aspect of the crevice corrosion and polarization behavior under the crevice corrosion was investigated. And Weight loss rate of SS 400 with crevice and non-crevice was measured according to the NaCl concentration. The main results obtained are as follows : 1) Under crevice corrosion, the corrosion potential become less noble as the concentration of NaCl solution increased. 2) The current density under open circuit potential was high drained as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, the current density was low drained. 3) The weight loss rate of SS400 was increased as concentration of NaCl solution increased by 3.5% but the concentration increased over 3.5%, that of SS400 was decreased.

  • PDF

Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Acid Solution - (HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(I) - 산성용액에서의 분극특성 -)

  • Kim, Tae-Yong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2014
  • The aim of this study to investigate polarization characteristics of WC-based alloy coatings fabricated by high velocity oxygen fuel(HVOF) process. The coatings were fabricated by HVOF process with WC-CrC-Ni, WC-Co-Cr, WC-Co composite powders. Corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. WC-Co-Cr coating showed more incorrodible characteristics than other coatings at solution pH 2. WC-CrC-Ni coating was more favorable anti-corrosion characteristics than other coatings at solution with pH 6.

Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution (후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성)

  • Kim, Tea-Yong;Kim, Jea-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.

Corrosion Properties of Al-(Ga, Sn, Mn) Alloy Anodes for an Al-air Battery in 4 M KOH Aqueous and Ethanol Solutions (4 M KOH 수용액 및 에탄올 용액에서 알루미늄 공기 전지용 Al-(Ga, Sn, Mn) 합금 음극의 부식 특성)

  • Lee, Han-Ok;Park, Chan-Jin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.

Corrosion Behavior of the parts of Carbon Steel Bolted GECM(Graphite Epoxy Composite Material)/Al plates (탄소강 볼트 체결된 GECM(Graphite Epoxy Composite Material)/Al 판재의 구성 부재의 부식 거동)

  • Kim, Youngsik;Park, Sujin;Yoo, Youngran
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.232-241
    • /
    • 2012
  • This work focused on corrosion of carbon steel bolted GECM/Al parts in tap water and NaCl solutions. In tap water and NaCl solutions, open circuit potential of GECM and its potentials in a series of carbon steel bolt>Ti>Al became active. Regardless of test materials, open circuit potentials in tap water were noble, and increasing NaCl concentration, its potentials became active. Immersion test of single specimen showed that no corrosion occur in Ti and GECM. In tap water, carbon steel bolt didn't show red corrosion product and in chloride solutions, corrosion rate in 1% NaCl solution was greater than its rate in 3.5% NaCl solution and red corrosion product in 1% NaCl solution was earlier observed than that in 3.5% NaCl solution. It seems that this behavior would be related to zinc-coatings on the surface of carbon stee l bolt. On the other hand, aluminium was corroded in tap water and chloride solutions. Corrosion of aluminium in tap water was due to the presence of chloride ion in tap water by sterilizing process.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.