• Title/Summary/Keyword: Corrosion remaining life

Search Result 54, Processing Time 0.026 seconds

Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures

  • Chen, Hua-Peng;Xiao, Nan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1183-1200
    • /
    • 2015
  • Reinforcement corrosion can cause serious safety deterioration to aging concrete structures exposed in aggressive environments. This paper presents an approach for reliability analyses of deteriorating reinforced concrete structures affected by reinforcement corrosion on the basis of the representative symptoms identified during the deterioration process. The concrete cracking growth and rebar bond strength evolution due to reinforcement corrosion are chosen as key symptoms for the performance deterioration of concrete structures. The crack width at concrete cover surface largely depends on the corrosion penetration of rebar due to the expansive rust layer at the bond interface generated by reinforcement corrosion. The bond strength of rebar in the concrete correlates well with concrete crack width and decays steadily with crack width growth. The estimates of cracking development and bond strength deterioration are examined by experimental data available from various sources, and then matched with symptom-based lifetime Weibull model. The symptom reliability and remaining useful life are predicted from the predictive lifetime Weibull model for deteriorating concrete structures. Finally, a numerical example is provided to demonstrate the applicability of the proposed approach for forecasting the performance of concrete structures subject to reinforcement corrosion. The results show that the corrosion rate has significant impact on the reliability associated with serviceability and load bearing capacity of reinforced concrete structures during their service life.

Maximum Crack Width Control in Concrete Bridges Affected By Corrosion (부식을 고려한 콘크리트 교량의 최대 균열폭 제어)

  • Cho, Tae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

Prediction of Remaining Life for Corroded Pipelines (부식 손상된 파이프라인의 잔존 수명 예측)

  • JIN, Yeung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.411-417
    • /
    • 2004
  • Recently, researchers and engineers from, the development of reliability engineering and probability fracture mechanics, have begun to take seriously the reliability analysis and the integrity for a corroded pipeline. Pressurized pipelines containing active corrosion defects increase gradually both in extent, and depth with increased periods of exposure. This causes a reduction of the remaining strength and the carrying capacity of a pipeline; and creates uncertainty about the future capacity. The steps that are necessary in order to assess the integrity of corroded pipelines will be discussed in this paper utilizing results from an actual model.

  • PDF

A Quantitative Evaluation on Steel Corrosion by Polarization Resistance Method (분극저항법에 의한 철근부식의 정량적 평가)

  • 정우용;손영무;윤영수;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.688-693
    • /
    • 2000
  • Recently great efforts and investment have been made in order to evaluate concrete durability by steel corrosion. But most of study is relatively or qualitatively estimated, therefore it has a great limitation in evaluating a remaining service life of concrete. In this research, steel corrosion rate was measured quantitatively by polarization resistance method and multi-regressed considering chloride, carbonation, coverage depth, relative humidity, W/C, and the use of deicing salts. And a half cell potential method was used at th same time for the purpose of comparing with polarization resistance method.

  • PDF

Mechanical characteristic of overhead transmission lines by forest fires (화염에 노출된 가공송전선의 기계적.재료적 특성 검토)

  • Kang, J.W.;Jang, T.I.;Kim, B.K.;Park, C.G.;Bang, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.339-341
    • /
    • 2002
  • The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires. This paper deals with investigation of strength deterioration performance of ACSR due to fires through several testing and analyzing data for both tension load and material analysis. Test samples are ACSR $480[mm^2]$ conductors, which are artificially fired to regular durations. As a result, it can be verified that tension load of ACSR are reduced by increasing fro duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Mechanical Deterioration of Overhead Transmission Lines by Forest Fires (산불에 의한 가공 송전선로의 기계적 열화 특성)

  • 김영달;김성덕;심재명;정동화;강지원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.26-34
    • /
    • 2000
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines have become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires.This paper deals with investigation of strength deterioration performance of ASCR due to fires through several testing and analyzing data for tension load and extension of blazed ACSR. Test samples are ACSR 480[$\textrm{mm}^2$] conductors, which are artificially fired to regular durations. Mechanical properties such as tension load and extension for fired ACSR conductors are tested and estimation functions for mechanical performances corresponding to fire duration are determined. As a result, it can be verified that both tension load and extension of ACSR are reduced by increasing fire duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

Prediction of Remaining Life Time and Determination of Inspection Cycle Considering Critical Crack in Tension Bar of Continuous Ship Unloader (연속식 하역기 텐션바의 임계 균열을 고려한 잔존수명 예측 및 검사 주기 선정)

  • Park, S.;Chung, J.Y.;Song, J.I.;Kim, D.J.;Seok, Chang Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • The Continuous Ship Unloader (CSU) is an equipment that unloads freight from the ship docked in the port to the land. And the design target life time is designed to be 30 to 50 years, and it is classified as a semi-permanent large facility. However, cracks may occur due to structural defects, abnormal loads, and corrosion, and fatigue failure may occur before the design life is reached. In this study, we predicted the remaining life time of the main component of the CSU considering crack. And also proposed inspection cycle for maintenance of CSU based on the results of the remaining life time prediction. For this purpose, the structure, operational stresses of the CSU were analyzed and main members were selected. And tensile tests and fatigue crack propagation tests were performed with SM490YA and SM570TMC, which are used as main materials for CSU.

Evaluation and Prediction of Corrosion Resistance of Epoxy Systems and Epoxy/Polyurethane Systems in Seawater Environment

  • Lee, Chul-Hwan;Shin, Chil-Seok;Baek, Kwang-Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • Current coating practice requires the thickness of anti-corrosion organic coatings to be over $250{\mu}m$ for immersion parts of ships and offshore structures and the corrosion resistance of these coatings has been evaluated by destructive and qualitative analysis. Recently, Electrochemical Impedance Spectroscopy(EIS) method has been employed, as an alternative, to evaluate corrosion resistance of organic coatings. This method is characterized as being nondestructive, reproducible, and quantitative in evaluating aging of organic coatings. In this study, EIS method was adopted to quantitatively and effectively select the coating systems having optimized protective performance. Evaluations of several epoxy and epoxy/polyurethane coating systems typically used for ships and offshore structures were carried out in wet($50^{\circ}C$, $90^{\circ}C$) and dry(room temp.) environments to accelerate the degradation of the organic coatings. These results were compared with the conventional scribed(scratched) test results. The plausible prediction model for determining the remaining life-time of coating systems was also proposed based on variations of impedance data, FT-IR and $T_g$ measurements results.