• 제목/요약/키워드: Corrosion prediction

검색결과 267건 처리시간 0.028초

철근부식에 의한 육지 콘크리트의 잔존수명 예측 (The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion)

  • 정우용;윤영수;송하원;변근주
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

인공부식재의 피로강도평가와 통계학적 수명예측에 관한 연구 (Life Prediction and Fatigue Strength Evaluation for Surface Corrosion Materials)

  • 권재도;진영준;장순식
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1503-1512
    • /
    • 1992
  • 본 연구에서는 열화평가 및 수명예측에 있어서 가장 중요한 문제로 대두되는 기계구조물의 사용시간과 부식 정도에 대한 관계 곡선을 규명하기 위하여 실험실의 가혹 환경하에서 부식을 시키면서 표면을 측정한 데이터로 통계적인 파라메타(parame- ter)를 추정하여, 인공부식시킨 부식재로 피로 강도를 평가하고, 또 부식된 구조물의 잔존수명을 예측할 수 있는 하나의 방법을 제시하고저 한다.

해양 구조물의 철근부식 예측기법 개발에 관한 연구 (A Study on the Development of Corrosion Prediction System of Reinforcing Bars in Sea-shore Structure)

  • 박승범;김도겸
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.89-100
    • /
    • 1999
  • Service life of concrete structures that are exposed to the environmental attack is largely influenced by the corrosion of reinforcing bare due to the chloride contamination. Chloride ions penetrate continuously into concrete from the environment, and chloride diffusion velocity is governed by a mechanical steady stage. In this study, a method is developed to predict corrosion initiation of reinforcing bars in the sea-shore structures, based on governing equations that take into account the diffusing of chloride ions and a mechanical steady state. As a result of this study, Corrosion Prediction System (CPS) is developed, and it can be used to determine an optimal time for repair and rehabilitation actions need to be taken. Futhermore, CPS assists the concrete mixing structures by predicting of chloride concentrations in concrete mixture, exposed to salt concentrations and service environment.

Effect of External Corrosion in Pipeline on Failure Prediction

  • Lee, Ouk-Sub;Kim, Ho-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.48-54
    • /
    • 2000
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using a numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method)with an elastic-plstic and large-deformation analysis. Corrosion pits and narrow corrosion grooves in pressurized pipeline were analysed. A failure criterion, based on the local stress state at the corrosion and a plastic collapse failure mechanism, is proposed. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis compared with those by methods specified in ANSI/ASME B31G code and a modified B31G code. It is concluded the corrosion geometry significantly affects the failure behavior of corroded pipeline and categorisation of pipeline corrosion should be considered in the development of new guidance for integrity assessment.

  • PDF

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

상대 습도, 염화물 누적률, 표면 입자를 고려한 탄소강의 대기부식 모델 (Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles)

  • 신진수;권혁준;김홍석;이두열
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.324-333
    • /
    • 2024
  • Atmospheric corrosion poses a significant threat to durability of metallic materials and safety of structures, making precise prediction of corrosion rates crucial in industrial and engineering settings. Understanding the exact rate of corrosion is essential. However, accurate inclusion of various environmental factors that can influence atmospheric corrosion in the calculation of corrosion rate is a complex challenge. This study introduces a physics-based model that incorporates electrochemical methods and considers active surface area affected by surface contaminants to estimate atmospheric corrosion rate of carbon steel. The model can evaluate corrosion levels using key factors such as chloride deposition rate, relative humidity, and the presence of surface particles. By integrating these considerations, this model moves beyond empirical estimations, providing a more stable prediction of corrosion rate that is less susceptible to environmental variations. This model provides a robust tool for defense applications, offering precise insights into the dynamics of atmospheric corrosion that could enhance the maintenance and safety of weapon systems.

부식과 도장을 고려한 선체잔여수명예측시스템 설계 (Design of Hull Residual Life Prediction System Considering Corrosion and Coating)

  • 박성환;이한민
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.104-110
    • /
    • 2013
  • In this paper, the design procedure and results for 'Residual Life Prediction System Considering Corrosion and Coating' are explained, which is one module of 'Life-cycle Management System of Ship and Offshore Plant's' Operation. This 'Residual Life Prediction System' has two main functions; one is residual life prediction function based on probability processing using corrosion measurement data of ship's major structural members, and another is rust rate prediction function based on visual image processing of inspection photos. The analysis of system user requirements and functions are introduced, and the structure and environment of the developed system are explained.

부식감시 및 방식을 위한 웹기반 예측시스템에 관한 연구 (Study on the Web-based Prediction System for Corrosion Monitoring and Anti-corrosion)

  • 박형근;김선엽
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.784-789
    • /
    • 2012
  • 본 논문에서는 방식 대상물 주변에 설치되어 있는 다수의 양극과 기준전극을 감시하고, 상황에 맞게 고정전위 및 분극 방법을 자동으로 적용할 수 있는 시스템을 개발하였다. 특히, 개발된 시스템은 방식 대상물의 전 부분이 균일하게 방식이 이루어지도록 자동 조정하는 기능을 가진 원격 전기방식 자동제어 장치, 부식전위를 검출하는 기능을 수행하는 부식감시 장치 그리고 이들 장치의 부식 및 방식 관련 데이터에 대해 실시간 감시 및 제어와 예측 기능을 수행하는 웹기반 운영프로그램으로 구성하였으며, 이 시스템을 이용하여 산화현상에 의한 부식을 방지함으로써 방식 대상물의 수명을 최대화할 수 있다.

콘크리트의 내구성 설계시 탄산화 임계깊이가 철근부식 개시시기에 미치는 영향에 관한 연구 (Effect of Carbonation Threshold Depth on the Initiation Time of Corrosion at the Concrete Durability Design)

  • 양재원;이상현;송훈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.229-230
    • /
    • 2010
  • The Carbonation, one of the main deterioration factors of concrete, reduces capacity of members with providing rebar corrosion environment. Consequently it suggested standards of all countries of world, carbonation depth prediction equation of respective researchers and time to rebar corrosion initiation. As a result of carbonation depth prediction equation calculation, difference of time to rebar corrosion initiation is 149 years and difference of carbonation depth prediction equation is 162 years when water cement ratio is 50%. So a study on rebar corrosion with carbonation depth will need existing reliable data and verifications by experiment.

  • PDF

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권8호
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.