DOI QR코드

DOI QR Code

Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles

상대 습도, 염화물 누적률, 표면 입자를 고려한 탄소강의 대기부식 모델

  • Jinsoo Shin (Department of Defense Science, Korea National Defense University) ;
  • Hyeok-Jun Kwon (Aero Technology Research Institute, Republic of Korea Air Force) ;
  • Hongseok Kim (Department of Mechanical Engineering, Seoul National University) ;
  • Dooyoul Lee (Department of Defense Science, Korea National Defense University)
  • 신진수 (국방대학교 국방과학학과) ;
  • 권혁준 (공군 항공기술연구소) ;
  • 김홍석 (서울대학교 기계공학부) ;
  • 이두열 (국방대학교 국방과학학과)
  • Received : 2024.07.14
  • Accepted : 2024.08.21
  • Published : 2024.08.30

Abstract

Atmospheric corrosion poses a significant threat to durability of metallic materials and safety of structures, making precise prediction of corrosion rates crucial in industrial and engineering settings. Understanding the exact rate of corrosion is essential. However, accurate inclusion of various environmental factors that can influence atmospheric corrosion in the calculation of corrosion rate is a complex challenge. This study introduces a physics-based model that incorporates electrochemical methods and considers active surface area affected by surface contaminants to estimate atmospheric corrosion rate of carbon steel. The model can evaluate corrosion levels using key factors such as chloride deposition rate, relative humidity, and the presence of surface particles. By integrating these considerations, this model moves beyond empirical estimations, providing a more stable prediction of corrosion rate that is less susceptible to environmental variations. This model provides a robust tool for defense applications, offering precise insights into the dynamics of atmospheric corrosion that could enhance the maintenance and safety of weapon systems.

Keywords

References

  1. C. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel, Atmospheric Corrosion, 2nd ed., pp. 1 - 6, John Wiley & Sons, New York (2016). Doi: https://doi.org/10.1002/9781118762134.ch1
  2. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, Houston, Texas, USA (2016).
  3. J. Yun, D. Lee, S. Park, M. S. Kim, and D. Choi, The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity, Corrosion Science and Technology, 20, 2 (2021). Doi: https://doi.org/10.14773/cst.2021.20.2.94
  4. Rachel S. Tsoutsani, Master's Thesis, pp. 63 - 82, National Technical University of Athens School of Naval Arcitecture and Marine Engineering, Athens (2016).
  5. Jirui Wang, Ziheng Bai, Kui Xiao, Xiong Gao, Pan Yi, Chaofang Dong, Junsheng Wu, and Dan Wei, Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments, Applied Surface Science, 467-468, 889 (2019). Doi: https://doi.org/10.1016/j.apsusc.2018.10.244
  6. ISO 9223, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation (2012).
  7. S. W. Dean, D. Knotkova, and K. Kreislova, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM International, Pennsylvania (2010). Doi: https://doi.org/10.1520/DS71-EB
  8. M. Morcillo, Atmospheric Corrosion in Ibero-America: The MICAT Project, ASTM International, Pennsylvania (1995). Doi: https://doi.org/10.1520/STP14924S
  9. Herbert E. Townsend, Outdoor Atmospheric Corrosion, 1st ed., pp. 59 - 72, ASTM International, Pennsylvania (2002). Doi: https://doi.org/10.1520/STP1421-EB
  10. J. J. Santana, A. Ramos, A. Rodriguez-Gonzalez, H. C. Vasconcelos, V. Mena, B. M. Fernandez-Perez, and R. M. Souto, Shortcomings of International Standard ISO 9223 for the Classification, Determination, and Estimation of Atmosphere Corrosivities in Subtropical Archipelagic Conditions-The Case of the Canary Islands, Metals, 9, 1105 (2019). Doi: https://doi.org/10.3390/met9101105
  11. F. Corvo, T. Perez, Y. Martin, J. Reyes, L. Dzib, J. Gonzalez, and A. Castaneda, Electroanalytical Chemistry: New Research, 1st ed., pp. 62 - 91, Nova Science Publishers, New York (2008).
  12. J. Morales, S. Martin-Krijer, F. Diaz, J. Hernandez-Borges, and S. Gonzalez, Atmospheric corrosion in subtropical areas: influences of time of wetness and deficiency of the ISO 9223 norm, Corrosion Science, 47, 2005 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.09.005
  13. R. Summitt, and F. T. Fink, PACER LIME: An Environmental Corrosion Severity Classification System, AFWAL-TR-80-4102 Part 1, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio (1980).
  14. H. Wu, Y. Luo, and G. Zhou, The Evolution of the Corrosion Mechanism of Structural Steel Exposed to the Urban Industrial Atmosphere for Seven Years, Applied Sciences, 13, 4500 (2023). Doi: https://doi.org/10.3390/app13074500
  15. Allen J. Bard, Larry R. Faulkner, and Henry S. White, Electrochemical Methods: Fundamentals and Applications, 2nd ed., pp. 87-99, John Wiley & Sons, New York (2001).
  16. Z. Y. Chen, F. Cui, and R. G. Kelly, Calculations of the Cathodic Current Delivery Capacity and Stability of Crevice Corrosion under Atmospheric Environments, Journal of The Electrochemical Society, 155, C360 (2008). Doi: https://doi.org/10.1149/1.2926557
  17. D. Mizuno, and R. G. Kelly, Galvanically Induced Intergranular Corrosion of AA5083-H131 Under Atmospheric Exposure Conditions: Part 2-Modeling of the Damage Distribution, CORROSION, 69, 681 (2013). Doi: https://doi.org/10.5006/0813
  18. Chomsin Sulistya Widodo, Herenda Sela, and Didik Rahadi Santosa, Proc. AIP Conf., 2021, 5062753, East Java, Indonesia (2018). Doi: https://doi.org/10.1063/1.5062753
  19. M. Stefanoni, U. M. Angst, and B. Elsener, Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media, Scientific Reports, 8, 7407 (2018). Doi: https://doi.org/10.1038/s41598-018-25794-x
  20. D. Shi, J. Li, Y. Du, Q. Wu, S. Huang, H. Huang, and D. Wu, Influence of Relative Humidity on the Characteristics of Filter Cake Using Particle Flow Code Simulation, Atmosphere, 13, 770 (2022). Doi: https://doi.org/10.3390/atmos13050770
  21. Pierre R. Roberge, Corrosion Engineering: Principles and Practice, 1st ed., pp. 39 - 40, McGraw Hill, New York (2008).
  22. T. Choi, and D. Lee, Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network, Materials, 16, 5326 (2023). Doi: https://doi.org/10.3390/ma16155326
  23. Z. Li, D. Fu, Y. Li, G. Wang, J. Meng, D. Zhang, Z. Yang, G. Ding, and J. Zhao, Application of An Electrical Resistance Sensor-Based Automated Corrosion Monitor in the Study of Atmospheric Corrosion, Materials, 12, 1065 (2019). Doi: https://doi.org/10.3390/ma12071065
  24. D. Saha, A. Pandya, J. K. Singh, S. Paswan, and D. D. N. Singh, Role of environmental particulate matters on corrosion of copper, Atmospheric Pollution Research, 7, 1037 (2016). Doi: https://doi.org/10.1016/j.apr.2016.06.007
  25. Christine E. Sanders, Dominique Verreault, G. S. Frankel, and Heather C. Allen, The Role of Sulfur in the Atmospheric Corrosion of Silver, Journal of The Electrochemical Society, 162, C630 (2018). Doi: https://doi.org/10.1149/2.0051512jes
  26. C. Arroyave, and M. Morcillo, The effect of nitrogen oxides in atmospheric corrosion of metals, Corrosion Science, 37, 293 (1995). Doi: https://doi.org/10.1016/0010-938X(94)00136-T
  27. H.-J. Kwon and D. Lee, Algorithm for Determining Aircraft Washing Intervals Using Atmospheric Corrosion Monitoring of Airbase Data and an Artificial Neural Network, Corrosion Science and Technology, 22, 377 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.377
  28. W. H. Abbott, A Decade of Corrosion Monitoring in the world's Military Operating Environments, Batelle Columbus Operations, Columbus, OH (2008).
  29. ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA (2011). Doi: https://doi.org/10.1520/G0001-03R17E01
  30. Wonjun Choi, Dooyoul Lee, Chi Bum Bahn, Quantitative Analysis Methods of Chloride Deposition on Silver for Atmospheric Corrosion Monitoring in South Korea, CORROSION, 77, 53 (2021). Doi: https://doi.org/10.5006/3622
  31. Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, 181, 259 (2010). Doi: https://doi.org/10.1016/j.cpc.2009.09.018