References
- C. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel, Atmospheric Corrosion, 2nd ed., pp. 1 - 6, John Wiley & Sons, New York (2016). Doi: https://doi.org/10.1002/9781118762134.ch1
- G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, Houston, Texas, USA (2016).
- J. Yun, D. Lee, S. Park, M. S. Kim, and D. Choi, The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity, Corrosion Science and Technology, 20, 2 (2021). Doi: https://doi.org/10.14773/cst.2021.20.2.94
- Rachel S. Tsoutsani, Master's Thesis, pp. 63 - 82, National Technical University of Athens School of Naval Arcitecture and Marine Engineering, Athens (2016).
- Jirui Wang, Ziheng Bai, Kui Xiao, Xiong Gao, Pan Yi, Chaofang Dong, Junsheng Wu, and Dan Wei, Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments, Applied Surface Science, 467-468, 889 (2019). Doi: https://doi.org/10.1016/j.apsusc.2018.10.244
- ISO 9223, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation (2012).
- S. W. Dean, D. Knotkova, and K. Kreislova, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM International, Pennsylvania (2010). Doi: https://doi.org/10.1520/DS71-EB
- M. Morcillo, Atmospheric Corrosion in Ibero-America: The MICAT Project, ASTM International, Pennsylvania (1995). Doi: https://doi.org/10.1520/STP14924S
- Herbert E. Townsend, Outdoor Atmospheric Corrosion, 1st ed., pp. 59 - 72, ASTM International, Pennsylvania (2002). Doi: https://doi.org/10.1520/STP1421-EB
- J. J. Santana, A. Ramos, A. Rodriguez-Gonzalez, H. C. Vasconcelos, V. Mena, B. M. Fernandez-Perez, and R. M. Souto, Shortcomings of International Standard ISO 9223 for the Classification, Determination, and Estimation of Atmosphere Corrosivities in Subtropical Archipelagic Conditions-The Case of the Canary Islands, Metals, 9, 1105 (2019). Doi: https://doi.org/10.3390/met9101105
- F. Corvo, T. Perez, Y. Martin, J. Reyes, L. Dzib, J. Gonzalez, and A. Castaneda, Electroanalytical Chemistry: New Research, 1st ed., pp. 62 - 91, Nova Science Publishers, New York (2008).
- J. Morales, S. Martin-Krijer, F. Diaz, J. Hernandez-Borges, and S. Gonzalez, Atmospheric corrosion in subtropical areas: influences of time of wetness and deficiency of the ISO 9223 norm, Corrosion Science, 47, 2005 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.09.005
- R. Summitt, and F. T. Fink, PACER LIME: An Environmental Corrosion Severity Classification System, AFWAL-TR-80-4102 Part 1, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio (1980).
- H. Wu, Y. Luo, and G. Zhou, The Evolution of the Corrosion Mechanism of Structural Steel Exposed to the Urban Industrial Atmosphere for Seven Years, Applied Sciences, 13, 4500 (2023). Doi: https://doi.org/10.3390/app13074500
- Allen J. Bard, Larry R. Faulkner, and Henry S. White, Electrochemical Methods: Fundamentals and Applications, 2nd ed., pp. 87-99, John Wiley & Sons, New York (2001).
- Z. Y. Chen, F. Cui, and R. G. Kelly, Calculations of the Cathodic Current Delivery Capacity and Stability of Crevice Corrosion under Atmospheric Environments, Journal of The Electrochemical Society, 155, C360 (2008). Doi: https://doi.org/10.1149/1.2926557
- D. Mizuno, and R. G. Kelly, Galvanically Induced Intergranular Corrosion of AA5083-H131 Under Atmospheric Exposure Conditions: Part 2-Modeling of the Damage Distribution, CORROSION, 69, 681 (2013). Doi: https://doi.org/10.5006/0813
- Chomsin Sulistya Widodo, Herenda Sela, and Didik Rahadi Santosa, Proc. AIP Conf., 2021, 5062753, East Java, Indonesia (2018). Doi: https://doi.org/10.1063/1.5062753
- M. Stefanoni, U. M. Angst, and B. Elsener, Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media, Scientific Reports, 8, 7407 (2018). Doi: https://doi.org/10.1038/s41598-018-25794-x
- D. Shi, J. Li, Y. Du, Q. Wu, S. Huang, H. Huang, and D. Wu, Influence of Relative Humidity on the Characteristics of Filter Cake Using Particle Flow Code Simulation, Atmosphere, 13, 770 (2022). Doi: https://doi.org/10.3390/atmos13050770
- Pierre R. Roberge, Corrosion Engineering: Principles and Practice, 1st ed., pp. 39 - 40, McGraw Hill, New York (2008).
- T. Choi, and D. Lee, Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network, Materials, 16, 5326 (2023). Doi: https://doi.org/10.3390/ma16155326
- Z. Li, D. Fu, Y. Li, G. Wang, J. Meng, D. Zhang, Z. Yang, G. Ding, and J. Zhao, Application of An Electrical Resistance Sensor-Based Automated Corrosion Monitor in the Study of Atmospheric Corrosion, Materials, 12, 1065 (2019). Doi: https://doi.org/10.3390/ma12071065
- D. Saha, A. Pandya, J. K. Singh, S. Paswan, and D. D. N. Singh, Role of environmental particulate matters on corrosion of copper, Atmospheric Pollution Research, 7, 1037 (2016). Doi: https://doi.org/10.1016/j.apr.2016.06.007
- Christine E. Sanders, Dominique Verreault, G. S. Frankel, and Heather C. Allen, The Role of Sulfur in the Atmospheric Corrosion of Silver, Journal of The Electrochemical Society, 162, C630 (2018). Doi: https://doi.org/10.1149/2.0051512jes
- C. Arroyave, and M. Morcillo, The effect of nitrogen oxides in atmospheric corrosion of metals, Corrosion Science, 37, 293 (1995). Doi: https://doi.org/10.1016/0010-938X(94)00136-T
- H.-J. Kwon and D. Lee, Algorithm for Determining Aircraft Washing Intervals Using Atmospheric Corrosion Monitoring of Airbase Data and an Artificial Neural Network, Corrosion Science and Technology, 22, 377 (2023). Doi: https://doi.org/10.14773/cst.2023.22.5.377
- W. H. Abbott, A Decade of Corrosion Monitoring in the world's Military Operating Environments, Batelle Columbus Operations, Columbus, OH (2008).
- ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA (2011). Doi: https://doi.org/10.1520/G0001-03R17E01
- Wonjun Choi, Dooyoul Lee, Chi Bum Bahn, Quantitative Analysis Methods of Chloride Deposition on Silver for Atmospheric Corrosion Monitoring in South Korea, CORROSION, 77, 53 (2021). Doi: https://doi.org/10.5006/3622
- Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano Tarantola, Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, 181, 259 (2010). Doi: https://doi.org/10.1016/j.cpc.2009.09.018