• 제목/요약/키워드: Corrosion modelling

검색결과 46건 처리시간 0.022초

다이폴 모델링 기법을 이용한 수중 전기장 신호 특성 예측 기법 연구 (A Study on Prediction Technique for Underwater Electric Field Signature Characteristic using Dipole Modelling Method)

  • 양창섭;정현주;이종주;전재진
    • 한국자기학회지
    • /
    • 제18권6호
    • /
    • pp.221-224
    • /
    • 2008
  • 본 논문에서는 함정 선체의 갈바닉 부식 전류에 의해 발생되는 수중 전기장 신호를 경계요소 해석 도구인 FNREMUS 소프트웨어를 이용하여 예측하고, 예측된 신호로부터 함정 전기장 신호 특성을 특이치 분해(singular value decomposition) 방법을 이용하여 등가적으로 다이폴 모델링하는 방법에 대해 기술하고 있다. 제안된 다이폴 모델링 기법은 30 m 심도에서 예측된 경계요소 해석 결과와의 평균 차이 비교 방법을 통해 타당함이 확인되었다. 본 논문에서 제안된 모델링 기법을 이용하면 함정에서의 다양한 심도 변화에 따른 수중 정 전기장 신호 분포 특성 예측 및 분석이 가능하다.

생산수량에 따른 Ti-N 코팅 펀치의 마멸해석 (Wear Analysis of the Ti-N Coated Punch in Piercing According to the Volume of Production)

  • 황상홍;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.149-157
    • /
    • 2000
  • Tool wear in the shearing process such as blanking, piercing and trimming is very important, because it has great effects on the dimensional accuracy, working efficiency and economy. Most of tools in the shearing process have the coated layer at surface fur good wear and corrosion resistance. When the surface of tool is teated, the wear Phenomena of coated surface layer and inner layer may be different. This paper describes a computer modelling technique by the finite element method in order to investigate the wear mechanism and to predict the wear profile of Ti-N coated tool in piercing process according to the volume of Production. Wear coefficients of the coated layer and inner layer are obtained through Pin-on-Disk wear test, respectively. To verify the effectiveness of the suggested technique, the technique is applied to wear analysis in piercing recess of piston pin and simulation results are compared with experimental ones.

  • PDF

Study on the splitting failure of the surrounding rock of underground caverns

  • Li, Xiaojing;Chen, Han-Mei;Sun, Yanbo;Zhou, Rongxin;Wang, Lige
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.499-507
    • /
    • 2018
  • In this paper splitting failure on rock pillars among the underground caverns has been studied. The damaged structure is considered to be thin plates and then the failure mechanism of rock pillars has been studied consequently. The critical load of buckling failure of the rock plate has also been obtained. Furthermore, with a combination of the basic energy dissipation principle, generalized formulas in estimating the number of splitting cracks and in predicting the maximum deflection of thin plate have been proposed. The splitting criterion and the mechanical model proposed in this paper are finally verified with numerical calculations in FLAC 3D.

무수축 콘크리트 혼화제를 활용한 New Austria Tunnel Method 수지에서 Monte Carlo 시뮬레이션에 관한 연구 (A Study on Monte Carlo Simulation in Resin of New Austria Tunnel Method by admixture for Shrinkage Compensating Concrete)

  • 김기준;성완모;김주한;정형학
    • 한국응용과학기술학회지
    • /
    • 제34권1호
    • /
    • pp.125-131
    • /
    • 2017
  • 콘크리트 혼화제의 무수축 그라우트에서 산란체와 흡수체의 영향은 빛산란에 의해 파장에 대한 산란세기로 설명된다. New Austria Tunnel Method의 수지에 대한 산란의 분자특성들은 연구하기 위해 Monte Carlo Simulation하였다. 이는 산란매질에서 광학적 파라미터들(${\mu}_s$, ${\mu}_a$, ${\mu}_t$)에 의해 조사되어 그들의 영향을 알 수 있었다. 산란매질에서 광자에 대한 빛 분포에 의한 결과는 광원에서 검출기까지 거리가 가까우면 무수축혼화제의 산란이 증가하여 산란세기가 크게 나타나는데 혼화제가 첨가함에 따라 무수축 성질이 크게 나타났다. 이는 강구조물의 내구성을 위한 코팅과 부식에서 좋은 모델을 디자인하는데 도움이 될 것이다.

산업재해 안전을 위한 New Austria Tunnel Method 수지에서 빔산란에 관한 Monte Carlo 시뮬레이션에 관한 연구 (A Study on Monte Carlo Simulation by Beam Scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster)

  • 김기준;이주엽
    • 한국응용과학기술학회지
    • /
    • 제29권3호
    • /
    • pp.473-479
    • /
    • 2012
  • 혼탁매질에서 산란체와 흡수체의 영향은 빛산란에 의해 파장에 대한 산란세기로 설명된다. New Austria Tunnel Method의 수지에 대한 산란의 분자특성들은 연구하기 위해 Monte Carlo Simulation하였다. 이는 산란매질에서 광학적 파라미터들(${\mu}_s$, ${\mu}_a$, ${\mu}_t$)에 의해 조사되어 그들의 영향을 알 수 있었다. 산란매질에서 광자에 대한 빛분포에 의한 결과는 광원에서 검출기까지 거리가 가까우면 산란이 증가하여 산란세기가 크게 나타났다. 이는 강구조물의 내구성을 위한 코팅과 부식에서 좋은 모델을 디자인하는데 도움이 될 것이다.

Influence of the shape of head anchors on the durability of reinforced concrete elements

  • Martinez-Echeverria, M. Jose;Gil-Martin, Luisa Maria;Montero, Jose Rodriguez;Hernandez-Montes, Enrique
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.61-69
    • /
    • 2020
  • This paper looks into how the shape of headed bars may influence the durability of reinforced concrete structures. Nowadays the only heads used in site works are cylindrical in shape. An alternative shape of head is studied in this piece of work. The new head reduces the concentration of stresses and so the appearance of cracks. In this work durability is studied based on both, first cracking and failure mode. An experimental campaign of 12 specimens and finite element modelling are described. The specimens were subjected to an accelerated corrosion process using an electrical current supply. Direct current was impressed on the specimens until breaking. Test results and the results obtained from numerical models are presented. Results are presented in term of comparison between the two shapes of heads studied. It was shown that the shape of the head has a significant influence on durability of reinforced concrete structures with headed reinforcing bars.

Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis

  • Subramanian, Sathya;Zhang, Yi;Vinoth, Ganapathiraman;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.423-432
    • /
    • 2020
  • Hydraulic conductivity is one of the engineering properties of soil. This study focusses on the influence of cement content on the hydraulic conductivity of cemented sand, which is investigated based on the results from numerical analysis and laboratory testing. For numerical analysis the cemented samples were scanned using X-ray Computed Tomography (CT) while laboratory testing was carried out using a triaxial setup. Numerical analysis enables us to simulate flow through the sample and provides insight to the microstructure. It quantifies the pore volume, proportion of interconnected voids and pore size distribution in both cemented and uncemented samples, which could be computed only through empirical equations in case of laboratory testing. With reduction in global voids, the interconnecting voids within the samples also reduce with cement content. Gamma cumulative distribution function is used to predict the percentage of voids lesser than a given pore volume. Finally, the results obtained from both numerical analysis and laboratory testing are compared.

레이어 개념을 이용한 자동차 헤드램프 디자인과 이종재료 접합을 통한 시제품 제작에 관한 연구 (A Study on Automotive Head Lamp Design Using Layers Concept and Prototype Production by Welding on Dissimilar Materials)

  • 이정현
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.108-113
    • /
    • 2010
  • Decreasing products lifecycles and increasing consumers desires for quality and design make the automotive industries try to reduce time for developing new designs. In order to reduce developing time, I have designed head lamps, which are really important to have an effect on brand identities and images, using layers concept that is one of the international automotive design trends by alias and photoshop, and produced prototype by RP. To assemble the produced prototype to the body and manufacture the frame to exterior modelling efficiently, I have studied on joining dissimilar materials of aluminum alloy that can make the prototype lighter and stainless steel, which is good for corrosion resistance by using laser beam. These materials were welded for finding the optimum joining condition and evaluating the soundness of joining zone. The joining was performed under the condition of laser power 500, 550, 575, 600W and 11~14Hz. In this study, the suitable joining condition between aluminum alloy (Al 2024) and stainless steel (STS 304) can be obtained at the laser power 575W and frequency 12Hz.

지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성 (Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load)

  • 김호수;이승희;전건우;방혁규
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Impact of carbon dioxide on the stability of the small-scale structures by trapping the material properties

  • Zhou, Yunlong;Wang, Jian
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2022
  • The existence of active material in the environment causes the small-scale systems to be sensitive to the actual environment. Carbon dioxide is one of the active materials that exists a lot in the air conditions of the living environment. However, in some applications, the carbon dioxide-coated is used to improve the performance of systems against the destructive factors such as the corrosion; nevertheless, in the current research, the stability analysis of a carbon dioxide capture mechanism-coated beam is investigated according to the mathematical simulation of a rectangular composite beam utilizing the modified couple stress theory. The composite mechanism of carbon dioxide trapping is made of a polyacrylonitrile substrate that supports a cross-link polydimethylsiloxane gutter layer as the carbon dioxide mechanism trapping. Three novel types of carbon dioxide trapping mechanism involving methacrylate, poly (ethylene glycol) methyl ether methacrylate, and three pedant methacrylates are considered, which were introduced by Fu et al. (2016). Finally, according to introducing the methodology of carbon dioxide (CO2) trapping, the impact of various effective parameters on the stability of composite beams will be analyzed in detail.