• Title/Summary/Keyword: Corrosion mechanism

Search Result 403, Processing Time 0.023 seconds

Empirical Study on water wall tube corrosion mechanism for Tangential type coal fired power plant boiler (석탄화력발전소 보일러의 수냉벽튜브 부식 메카니즘에 대한 실증적 고찰)

  • Baek, Sehyun;Kim, HyunHee;Park, Hoyoung;Ko, SungHo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this study, boiler tube thickness measurement and numerical analysis were conducted for standard 500MW coal-fired power plant in order to research the mechanism of tangential-fired boiler corrosion empirically. The most dominant corrosion mechanism of tangential-fired boiler waterwall was corrosion by sulfur contained in the unburned carbon. And the secondary mechanism was $H_2S$ gas corrosion at localized reducing atmosphere. It is required to decrease the air-stage combustion operation in order to mitigate the waterwall tube corrosion. Also stringent coal pulverization quality control and reinforcing work for corrosion susceptible area such as anti-corrosion coatings is required

Kinetics and Mechanism of Corrosion of ρ-alumina Bonded Alumina Castable by Molten Slag (ρ-알루미나결합 알루미나 캐스터블의 용융슬래그에 의한 침식기구)

  • 천승호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1015-1020
    • /
    • 2003
  • The Corrosion behavior of the matrix of the $\rho$-alumina bonded alumina vibrated castable was, on the basis of Jabsen's theory, elucidated by use of the Kingery's reaction mechanism. Corrosion of the matrix during induction period was controlled by the molecular diffusion. The temperature dependence of activation process is well established by the Arrhenius plots. The difference of Ca concentration between slag and interface is 23.2%, which causes a driving force of the materials transfer. The extent of the corrosion of the matrix is more deeper than that of the sintered mullite, but the corrosion mechanism can be well employed as the reaction mechanism proposed by the Kingery. The life time of the castable may be well estimated by the corrosion mechanism of Kingery.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

A Study on the Corrosion Mechanism by the Moisture on the Surface Layer of the Alloys Coated Steel Sheet (합금도금강판의 수적에 의한 표면층의 부식기구에 관한 연구)

  • Kim, Y.H.;Kim, S.K.;Jeon, E.C.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • Since the early 1980's the use of zinc-aluminum alloy-coated steel sheet(Galvalume) for vehicular corrosion protection has increased drastically. It is consisting of 55%Al-43.4% Zn-1.6%Si. Galvalume has a good corrosion resistance, heat reflectivity and shiny appearance, which has a dendritic structure of alloy layer. It has a good corrosion resistance due to dendritic structure. But, this also has a weak point against moisture during long period of transportation as sheeted and or coiled without any relation of chromating on the surface of steel sheet or not because of high humidity and temperature. Here, We studied the corrosion mechanism by the moisture.

  • PDF

Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism (이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘)

  • Lee, K.H.;Bae, I.Y.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

Comparative study on Corrosion Inhibition of Vietnam Orange Peel Essential Oil with Urotropine and Insight of Corrosion Inhibition Mechanism for Mild Steel in Hydrochloric Solution

  • Bui, Huyen T.T.;Dang, Trung-Dung;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.69-81
    • /
    • 2019
  • The corrosion inhibiting mechanism of Vietnam orange peel essential oil (OPEO) for mild steel in 1 N HCl solution was investigated elaborately. Corrosion inhibition ability of OPEO was characterized by electrochemical polarization, electrochemical impedance spectroscopy (EIS), and weight loss method. In the corrosive solution, OPEO worked as a mixed inhibitor and the inhibition efficiency of OPEO increased with the increase of its concentration. High inhibition efficiencies over 90% were achieved for the concentration of 3 - 4 g/L OPEO, comparable to that of 3.5 g/L urotropine (URO), a commercial corrosion inhibitor for acid media used in industry. By using adsorption isotherm models (Langmuir, Temkin and Frumkin), thermodynamic parameters of adsorption were calculated. The obtained results indicated physical adsorption mechanism of OPEO on the steel surface. The components responsible for the corrosion inhibition activity of OPEO were not only D-limonene, but also other compounds, which contain C=O, C=C, O-H, C-O-C, -C=CH and C-H bonding groups in the molecules.

Design Considerations to Enhance Perforation Corrosion and Life Prediction of Automotive Body Panel

  • Choi, Minsoo;Chung, Bumgoo;Choi, Jaewoong
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.247-251
    • /
    • 2003
  • The corrosion forms of automotive body panels are various. One of the representations is a corrosion pitting and its propagation on the lapped portion by galvanic corrosion. But it has been difficult in correlation analysis about the corrosion propagation rate and mechanism of pitting and the actual automotive body in field. This present study interprets experimentally the rust pitting occurrence mechanism on the lapped panels through experimental methods. And field car investigation was executed for correlation analysis with experimental results. This paper compares corrosion propagation rate by pitting on hot-dip galvannealed steel sheets with corrosion forms in the automotive field condition. The research fundamentals which make it possible to predict the pitting occurrence and propagation on the lapped panels in the actual vehicles are given.

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

A Study on the Mechanism of Crevice Corrosion for 430 Stainless Steel (430 스테인리스강의 틈부식 발생기구에 대한 연구)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.447-452
    • /
    • 2003
  • Crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. Such stagnant micro environments tend to occur in crevices (shielded areas) such as those formed under gaskets washers insulation material. fastener heads. surface deposits. disbonded coatings. threads. lap joints and clamps. Crevice corrosion is initiated by changes in located electrochemical reaction within the crevice such as a) depletion of inhibitor in the crevice b) depletion of oxygen in the crevice c) a shift to acid conditions in the crevice and d) build-up of aggressive ion species (e.g chloride) in the crevice. In this study. the mechanism of crevice corrosion for Type 430 stainless steel is investigated undercondition that the size of specimen is $15{\times}20\{times}3mm$, in 1N $H_2SO_4$ + 0.05N NaCl solution. and the artificial crevice gap size of 3 x 0.2 x 15 mm. Crevice corrosion is measured under applied potential -300mV(SCE) to the external surface. The obtained result of this study showed that 1) the induced time for initiation of crevice is 750 seconds. 2) potential of the crevice was about from -320mV to -399mV. which is lower than that of external surface potential of -300mV It is considered that potential drop in the crevice is one of mechanisms for the crevice corrosion