• Title/Summary/Keyword: Corrosion inhibitors

Search Result 148, Processing Time 0.03 seconds

Comparison of High-Durability Materials for Prevention of Corrosion in Marine Concrete Structures (해양콘크리트구조물의 부식 방지를 위한 고내구성 재료의 성능비교)

  • Lee, Dong-Gun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae;Han, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.581-584
    • /
    • 2006
  • The durability of reinforced concrete structures is severely degraded by mainly corrosion due to seawater attack and chloride ion diffusion in concrete. The deterioration of durability causes high repair cost for maintenance of marine concrete structure. In this paper, high-durability materials for prevention of rebar corrosion are investigated to promote the durability in marine concrete structures. For these, the effect of the mineral materials addition(SF, FA and BFS), the modified steel(stainless and coating steel). and corrosion inhibitors are compared.

  • PDF

Nanoparticles Modified With Cationic Thiol Surfactant as Efficient Inhibitors for the Corrosion of Carbon Steel

  • Azzam, Eid M.S.;Sami, Radwa M.;Alenezi, Khalaf M.;El Moll, Hani;Haque, A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.308-316
    • /
    • 2021
  • In this work, we report synthesis, characterization and corrosion inhibition properties of cationic thiol surfactant-capped silver (SC-Ag-NPs) and gold (SC-Au-NPs) nanoparticles. SC-Ag-NPs and SC-Au-NPs were characterized using regular techniques include TEM. Corrosion study was carried out using carbon steel (CS) in 3.5% NaCl aqueous solution and characterized using multiple electrochemical techniques. Our results suggest that the paint containing SC-Ag-NPs and SC-Au-NPs endow efficient corrosion protection to the CS. Especially, SC-Au-NPs based paint form a stronger barrier between the metal and the corrosive ions, leading to better inhibition properties.

A Study on the Inhibition Effect of Metal Corrosion Using Organic Compound Containing an Amine Group (아민기를 가진 유기물을 사용한 금속의 부식억제효과)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.361-369
    • /
    • 2010
  • A study on the corrosion inhibition of metals is important in many industrial applications (carbon steel, copper, aluminum, SUS 304, nickel). In this study, we investigated the C-V diagrams related to the surface corrosion of metals. It was observed through the SEM that the surface corrosion state of the various metals had the corrosion potential by the scan rate and the organic inhibitor containing an amine group. We determined to measure cyclic voltammetry using the three-electrode system. The measurement of oxidation and reduction ranged from -1350mV to 1650mV. The scan rate was 50, 100, 150, and 200mV/s. It turned out that the C-V characterization of SUS 304 was irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic inhibitors, the adsorption film was constituted, and the passive phenomena happened. As a result, it was revealed that the inhibition effect of metal corrosion depends on the molecular interaction, and the interaction has influence on the adsorption complex.

Self-healing Coatings for Corrosion Protection: A Review of Recent Advances (자기치유 부식방지 코팅의 최근 동향)

  • Park, Byoung Kyeu
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.244-251
    • /
    • 2014
  • In recent years, self-healing coatings have been the subject of increasing interest. The ability of such coatings to self-repair local damage caused by external factors is a major factor contributing to their attractiveness. Metals are extensively used in modern society in a range of applications from infrastructure to aircraft to consumer products. The protection of metals, primarily from corrosion has been an active area of materials science for many years. The aim of this review is the demonstration for recent progress achieved in the development of carrier-based self-healing coatings for the protection of metals. This review mainly covers the reports published after 2010. Two main types of carriers for corrosion inhibitors or healing agents-polymer capsules and porous composite inorganic nanoparticles-are described.

Some Thiosemicarbazide Derivatives as Corrosion Inhibitors for Aluminium in Sodium Hydroxide Solution

  • Moussa, M.N.;Fouda, A.S.;Taha, F.I.;Elnenaa, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.191-195
    • /
    • 1988
  • The effect of some thiosemicarbazide derivatives on corrosion of aluminium in 2M sodium hydroxide has been studied using thermometric, weight loss and hydrogen evolution techniques. The rate of the corrosion depends on the nature of the inhibitor and its concentration, heated of hydrogenation, mode of interaction with the metal surface and formation of metallic complexes. The compounds are weakly adsorbed on the surface of aluminium and form a monolayer of the adsorbate. Values of the Arrhenius activation energies indicate agreement with those obtained for an activation controlled process.

Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

  • Khadom, Anees A.;Yaro, Aprael S.;Musa, Ahmed Y.;Mohamad, Abu Bakar;Kadhum, Abdul Amir H.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.406-415
    • /
    • 2012
  • The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at $35^{\circ}C$ and 0.2 M inhibitor concentration EDA, while the lower value was 4% at $35^{\circ}C$ and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

The Effect of Imidazole and 2-Methyl Imidazole on the Corrosion of Mild Steel in Phosphoric Acid Solution

  • Chandrasekara, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.191-200
    • /
    • 2005
  • Two azole compounds viz., Imidazole (IM) and 2-Methylimidazole (2-MIM) were studied to investigate their inhibiting action on corrosion of mild steel in phosphoric acid ($H_3PO_4$) solution by mass loss and polarization techniques at 302K-333K. It has been found that the inhibition efficiency of the all inhibitors increased with increase in inhibitor concentration and decreases with increasing temperature and also with increase in acid concentrations. The inhibition efficiency of these compounds showed very good inhibition efficiency. At 0.5% of IM and 2-MIM in 1N and 5N phosphoric acid solution at 302K to 333K for 5 hours immersion period, the inhibition efficiency of 2-Methylimidazole found to be higher than Imidazole. The adsorption of these compounds on the mild steel surface from the acids has been found to obey Tempkin's adsorption isotherm. The values of activation energy ($E{\alpha}$) and free energy of adsorption (${\Delta}G{\alpha}ds$) were also calculated. The plots of log $W_f$ against time (days) at 302K give straight line which suggested that it obeys first order kinetics and also calculate the rate constant k and half life time $t_{1/2}$. Surface was analyzed by SEM and FITR spectroscopy.

Evaluation on Potentiostatic Characteristics of Al-4.06Mg-0.74Mn Alloy with Cavitation Environment in Seawater (Al-4.06Mg-0.74Mn 합금의 해수 내 캐비테이션 환경에 따른 정전위 특성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • The hull of a fast sailing aluminium ship are generally prone to erosion owing to the impact of seawater. At this time, synergistic effects of the erosion and the corrosion by aggressive ions such as chlorides tend to aggravate the damage. There have been various attempts, including selection of erosion-resistant materials, cathodic protection and addition of corrosion inhibitors, to overcome damage by erosion or corrosion under marine environments. These approaches, however, have limits on identifying the damage mechanism clearly, because they depend on analogical interpretation by correlating two damage behaviors after the individual studies are assessed. In this research, it was devised a hybrid testing apparatus that integrates electrochemical corrosion test and cavitation test, and thus the erosion-corrosion behavior by cavitation was investigated more reliably. As a result, the slightest damage was observed at the potentials between -1.6 V and -1.5 V. This is considered to be due to a reflection or counterbalancing effect caused by collision of the cavitation cavities and the hydrogen gas formed by activation polarization.

Corrosion Inhibition Properties of New Thiazolidinedione Derivatives for Copper in 3.5 wt.% NaCl Medium (3.5 중량% NaCl 매질에서 구리에 대한 새로운 티아졸리딘디온 유도체의 부식 억제 특성)

  • Lgaz, Hassane;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.27-28
    • /
    • 2021
  • The search for new corrosion inhibitors for different corrosive mediums is a never-ending task. In the present work, the corrosion inhibition behavior and adsorption mechanism of two novel synthetic thiazolidinedione derivatives noted MTZD and ATZD in 3.5 wt.% NaCl solution on copper were investigated. Electrochemical, scanning electron microscope (SEM), atomic force microscopy (AFM) techniques were used along with first-principles DFT calculations. At maximum inhibitor concentration i.e., 300 ppm corrosion inhibition efficiency reached maximum up to 90% and 96% for MTZD and ATZD, respectively, and thereby followed the order of ATZD > MTZD. The inhibition efficiency increased up to 24 h of immersion, and then decreased after 48h immersion. The potentiodynamic curves suggested that the inhibition action of tested compounds is a mixed type of inhibitor. The first-principles DFT calculations suggested that compounds under investigation formed covalent bonds with Cu(111) surface via reactive sites. SEM and AFM results confirmed the formation of protective barrier that prevent corrosion attack.

  • PDF

Study on the Effects of Corrosion Inhibitor According to the Functional Groups for Cu Chemical Mechanical Polishing in Neutral Environment (중성 영역 구리 화학적 기계적 평탄화 공정에서의 작용기에 따른 부식방지제의 영향성 연구)

  • Lee, Sang Won;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.517-523
    • /
    • 2015
  • As the aluminum (Al) metallization process was replaced with copper (Cu), the damascene process was introduced, which required the planarization step to eliminate over-deposited Cu with Chemical Mechanical Polishing (CMP) process. In this study, the verification of the corrosion inhibitors, one of the Cu CMP slurry components, was conducted to find out the tendency regarding the carboxyl and amino functional group in neutral environment. Through the results of etch rate, removal rate, and chemical ability of corrosion inhibitors based on 1H-1,2,4-triazole as the base-corrosion inhibitor, while the amine functional group presents high Cu etching ability, carboxyl functional group shows lower Cu etching ability than base-corrosion inhibitor which means that it increases passivation effect by making strong passivation layer. It implies that the corrosion inhibitor with amine functional group was proper to apply for 1st Cu CMP slurry owing to the high etch rate and with carboxyl functional group was favorable for the 2nd Cu CMP slurry due to the high Cu removal rate/dissolution rate ratio.