• 제목/요약/키워드: Corrosion in chloride environment

검색결과 204건 처리시간 0.025초

염해에 따라 콘크리트 속에서 부식된 철근의 반전지전위와 부식전류밀도의 상관관계에 관한 실험적 연구 (An Experimental Study on Relationship Between Half-Cell Potential and Corrosion Current Density of Chloride-Induced Corroded Steel in Concrete)

  • 조상현;김동원;기성훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.1-13
    • /
    • 2022
  • 이 연구에서는 콘크리트 표면에서 측정된 반전지전위(half-cell potential, HCP)값을 활용하여 철근 부식 상태 및 부식속도의 정량적 평가 가능성을 논의하였다. 이 연구에서는 염수에 침지된 콘크리트 속 철근에 전류를 인가하여 다양한 부식상태의 철근 콘크리트 실험체(한 변의 길이가 200mm 인 정육면체)를 준비하였다. 부식촉진시험을 마치고, 염수 포화상태의 콘크리트 실험체 표면에서 HCP값을 측정하였고, 바로 이어서 동일한 조건의 실험체에서 전기화학적 임피던스 분광법을 활용하여 콘크리트 속 철근의 분극저항값을 측정하였다. 측정된 분극저항값을 Stern-Geary식에 대입하여 부식전류밀도(corrosion current density, icorr)를 계산하였다. 실험결과를 바탕으로 염해에 따라 다양한 부식상태의 철근이 매입된 철근 콘크리트 실험체의 염수 포화상태에서 HCP와 icorr의 상관관계를 도출하였다. 대체적으로 HCP와 icorr은 로그선형관계를 보였으며, R2값이 0.87이상의 높은 적합도를 확인하여 통계적인 유의함을 확인하였다. 이러한 결과는 일정한 환경에 노출된 철근 콘크리트일 경우 자연전위값을 측정함으로서 철근의 부식상태 및 속도를 평가할 수 있음을 실험적으로 확인하였다.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

TEM법에 의한 모르타르 중의 철근 부식 측정에 관한 연구 (A Study on the Measurement of Steel Corrosion in Mortar by TEM Method)

  • 이상호;한정섭
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.59-65
    • /
    • 2006
  • Steel, as a reinforcing mechanism in concrete, provides the tensile strength that is lacking in concrete, alone, and the high alkaline environment (pH 12.5) in concrete offers satisfactory protection against most corrosion of the steel. However, the corrosion of reinforcing steel in concrete can occur by chloride attack or carbonation, and it can cause a loss of integrity a section and concrete failure through cracking and spalling. In this study, a transient electro magnetic method (TEM) of a nondestructive technique is adapted to study the measuring method of steel corrosion in mortar. The sensor was made of an enameled wire, with a diameter of 0.25mm and anacril. He sensor configuration used was a coincident loop type. The secondary electro motive force (2nd EMF) was measured with SIROTEMIII, which equipped the accelerator. The accelerator allowsthe transmitter to turn off approximately $10\sim15$ times faster than normal. The high-resolution time series, used for very shallow or a high resistivity investigation was selected. After steels were corroded by the salt spray, during 4, 8, 15 and 25 days, they were embedded in mortar. The content results acquired in this study are as follows. The variation of the secondary electro motive force (2nd EMF) was shown by the change of steel surface with different corrosion time steel. It was confirmed that measurement of steel corrosion in mortar by a transient electro-magnetic method (TEM) can be possible.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교 (Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods)

  • 신재호;이재봉
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Oxidation Behavior of $Ni_xFe_{1-x}(OH)_2$ in $C\Gamma$-containing Solutions

  • Chung, Kyeong Woo;Kim, Kwang Bum
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.148-154
    • /
    • 2003
  • The addition of Ni leads to the formation of protective rust layer on steel and subsequently high corrosion resistance of steel in $Cl^-$-containing environment. $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH and $Fe_3O_4$ are formed mainly on steels exposed to $Cl^-$-containing environment. As the first work of this kind, this study reports the influence of Ni on the oxidation behavior of $Ni_xFe_{1-x}(OH)_2$ in $Cl^-$-containing solution at two different pH regions(condition I under which the solution pH is allowed to decrease and condition I under which solution pH is maintained at 8) where $\gamma$-FeOOH and $Fe_3O_4$ are predominantly formed, respectively, upon oxidation of $Fe(OH)_2$, In the presence of Ni(II) in the starting solution, the formation of $\beta$-FeOOH was facilitated and the formation of $\gamma$-FeOOH was suppressed with increasing Ni(II) content and with increasing oxidation rate of Fe(II). Ni(II) was found to have $Fe_3O_4$-suppressing effect under condition II.

Effect of Wet Curing Duration on Long-Term Performance of Concrete in Tidal Zone of Marine Environment

  • Khanzadeh-Moradllo, Mehdi;Meshkini, Mohammad H.;Eslamdoost, Ehsan;Sadati, Seyedhamed;Shekarchi, Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.487-498
    • /
    • 2015
  • A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect of curing length on time-to-corrosion initiation of concrete is addressed.

Numerical technique for chloride ingress with cover concrete property and time effect

  • Lee, Bang Yeon;Ismail, Mohamed A.;Kim, Hyeok-Jung;Yoo, Sung-Won;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.185-196
    • /
    • 2017
  • Durability problems initiated from steel corrosion are unseen but critical issues, so that many researches are focused on chloride penetration evaluation. Even if RC (Reinforced Concrete) structures are exposed to normal environment, chloride ingress varies with concrete surface conditions and exposed period. This paper presents an analysis technique for chloride behavior evaluation considering time effect on diffusion and surface conditions assumed as double-layered system. For evaluation of deteriorated surface condition, field investigation was performed for concrete pavement exposed to deicing agent for 18 years. In order to consider enhanced surface concrete, chloride profiles in surface-impregnated concretes exposed to chloride attack for 2 years from previous research were investigated. Through reverse analysis, effectively deteriorated/enhanced depth of surface and the related reduced/enlarged diffusion coefficient in the depth are simulated. The proposed analysis technique was evaluated to handle the chloride behavior more accurately considering changes of chloride ingress within surface layer and decreased diffusion coefficient with time. For the concrete surface exposed to deicing agent, the deteriorated depth and enlarged diffusion coefficient are evaluated to be 12.5~15.0 mm and 200% increasing diffusion coefficient, respectively. The results in concrete containing enhanced cover show 10.0~12.5 mm of impregnated depth and 85% reduction of chloride diffusion in tidal and submerged conditions.

A performance-based design method for chloride-induced cover cracking of RC structures

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.573-582
    • /
    • 2017
  • Chloride-induced cover cracking will aggravate the performance deterioration for RC structures under the chlorideladen environment, which may endanger the safety of structures and occupants. Traditional design method cannot ensure that a definite performance is satisfied. To overcome the defects, a study on the performance-based design method was carried out in this paper. Firstly, the limit state functions were established for the corrosion initiation and cover cracking. Thereafter, the uncertainty analysis was performed to study the effects of random factors on the time-dependent performances. Partial factor formulae were deduced through the first-order reliability method for performance verification. Finally, an illustrative example was presented and the sensitivity of cover depth to other parameters was carried out. It is found that the uncertainties of the random variables have great effects on the required cover depth. It is demonstrated that the performance-based design method can ensure that the target performance can be satisfied and support to formulate a rational maintenance and repair strategy for RC structures under the chloride environment.