• 제목/요약/키워드: Corrosion fatigue fracture

검색결과 90건 처리시간 0.025초

이온질화 처리한 SM45C의 피로파괴거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Fracture Behavior of Ion-Nitrided SM45C)

  • 김상철;우창기;강동명
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.47-54
    • /
    • 1990
  • 본 연구에서는 이온질화처리한 SM45C강의 피로파괴거동, 피로크랙진전거동 및 부식피로파괴거동에 관한 $N_2:H_2$가스조정비와 이온질화처리시간에 대한 효과를 조사하였다. 실험에 사용된 모든 종류의 시험편의 피로한도와 부식피로강도는 $N_2$가스와 처리시간에 비례하여 증가하였다. 무처리 시험편에 비해 이온질화처리시험편은 피로한도 및 부식피로강도가 $10^7$싸이클의 공기중에서 $24{\sim}29%$, $10^6$싸이클의 3% NaCl 수용액 중에서는 $32{\sim}48%$ 증가하였다. 반복압축-인장하중을 받는 SM45C강은 이온질화처리시험편이 무처리시험편에 비해 피로한도 및 부식피로강도가 $10^6$싸이클의 공기중에서 $24{\sim}29%$증가하였고, 3% NaCl 수용액중과 수도물중에서 $32{\sim}48%$의 증가를 보였다. 이온질화처리한 SM45C강은 무처리시험편에 비해 낮은범위의 ${\Delta}K$ 영역에서는 균열진전속도가 느리고, 높은 ${\Delta}K$ 영역에서는 빨라졌다.

  • PDF

Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I) (A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I))

  • 김봉철;한지원;우흥식
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

조선용강재의 부식피로와 전기방식에 관한 연구 (The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

자동차 에어 브레이크 스프링 고정용 SCM435 볼트의 파손 해석 (Failure Analysis of SCM435 Bolt for Fixing Automotive Air Brake Spring)

  • 윤서현;김민헌;남기우
    • 한국산업융합학회 논문집
    • /
    • 제23권1호
    • /
    • pp.73-81
    • /
    • 2020
  • This study analyzed the causes of failure of SCM435 bolts that fix the springs of automobile air brakes that have been fractured during use. The cause of failure was analyzed using SEM, EDS, metallogical microscope and Vickers hardness tester. In the fracture, the ratchet mark began at the outer boundary of crack origin, and the grains at crack origin were found to have clear intergranular corrosion. One SCM435 bolt was subjected to a stress of 398 MPa, it's a stress of about 80% of the fatigue limit. As a result of such a large applied stress, cracks occurred at the corrosion origin and were fractured. In order to prevent the SCM435 bolt from fracture, it is necessary to use the correct composition, the accuracy of heat treatment, preventing damage by external impact, preventing corrosion of the damage part by moisture, and introduction a compressive residual stress by peening.

콘크리트에 접해있는 강재의 국부부식과 피로손상 (Local Corrosion and Fatigue Damages of Steel Plates at the Boundary with Concrete)

  • 김인태;카이누마 시게노부;정진환
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.313-321
    • /
    • 2008
  • 최근 일본에서 하로식 트러스교의 콘크리트 상판을 관통하는 사재가 콘크리트 상판의 상부 또는 하부에서 심한 부식손상 에 의해 파단 된 사례가 보고되었다. 이는 도장막의 노화에 따른 콘크리트와의 경계부에 있어 사재의 국부부식에 기인한 것으로 추정되고 있다. 그러므로 이와 같이 콘크리트와 강재의 경계부에 있어서의 국부 부식손상 대책수립 및 이를 기점으로 발생될 수 있는 피로손상에 대한 검토가 필요하다. 본 실험에서는 인장시험편에 부분적으로 콘크리트 블록을 설치한 콘크리트-강재의 모델시험체에 대한 부식환경촉진실험을 실시하여, 경계부의 부식감소량을 측정하였으며, 부식실험 후의 모델시험체를 이용한 피로실험을 실시하였다. 부식촉진실험의 조건으로는 실제대기환경에의 적용성이 검토된 S6사이클(JIS K5621)을 사용하였으며, 부식촉진실험기간은 150일, 300일, 450일, 600일로 각 5개의 모델시험체를 사용하였다. 부식촉진실험결과를 근거로 실험기간에 따른 최대 및 평균 부식깊이를 정량화하였으며, 부식실험 후의 부식 손상된 모델시험체의 피로실험결과를 근거로 실험기간의 증가에 따른 피로강도 감소량을 명확히 하였다.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

구조용 금속의 초고주기피로 거동에 대한 연구 동향 (Reviews on Very High Cycle Fatigue Behaviors of Structural Metals)

  • 한승욱;박정훈;명노준;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.134-140
    • /
    • 2014
  • The paper presents an overview of the present state of study on the fatigue behaviors at very high number of cycles ($N_f$ > $10^7$). A classification of materials with typical S-N curves and influencing factors such as notches, residual stresses, temperatures, corrosion environments and stress ratios are given. The microstructural inhomogeneities of materials and micro-cracks played an important roles in very high cycle fatigue behaviors. The failure mechanisms for the fatigue design of materials and components are mentioned.

차량용 터빈 하우징의 내구시험에 의한 균열 발생 및 진행에 대한 연구 (Study on the Crack Occurrence and Progress by Durability Test for Vehicular Turbine Housing)

  • 신상윤;이도훈;원순재;김동혁;예병준
    • 한국주조공학회지
    • /
    • 제38권2호
    • /
    • pp.48-54
    • /
    • 2018
  • To improve the durability of the turbocharger, it is important to suppress cracking of the turbine housing; therefore, we investigated the initiation and growth of these cracks. First, we initiated a crack in the turbine housing using endurance experiments. After the endurance test, cracks mainly occurred in the valve seat, the nozzle area, and the scroll part of the turbine housing. The results of a fracture analysis of the cracks showed that cracks in the valve seat were initiated by fatigue fracture. This seems to be caused by the accumulation of mechanical and thermal stresses due to vibration of the turbine wheel and high-temperature exhaust gas. Also, cracks in nozzle and scroll area were initiated by intergranular corrosion due to the exhaust gas. Thus, although there are differences in the cause of initiation according to the site, a concentric waveform was observed in all fracture planes. This phenomenon indicates that cracks gradually grow due to repeated stress changes, and the main causes are the temperature difference of the exhaust gas and the vibration caused by the turbine shaft.

항공기용 초고장력강(300M) 부품의 가공변질층과 응력부식균열에 관한 연구 (A Study of the Affected Layer and Stress Corrosion Crack of Ultra-high-strength Steel (300M) for Aircraft Parts)

  • 안진우;김태환
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.1-8
    • /
    • 2020
  • Mechanical components that support structures in aerospace and power generation industries require high-strength materials. Particularly, in the aerospace industry, aluminum alloys, titanium alloys, and composite materials are increasingly used due to their high maneuverability and durability to withstand low temperature extreme environments; however, ultra-high-strength steel is still used in key components under heavy loads such as landing gears. In this paper, the fault cause analysis and troubleshooting of aircraft parts made of ultra-high-strength steel (300M) broken during normal operation are described. To identify the cause of the defect, a temporary inspection of the same aircraft was performed, and material testing, non-destructive inspection, microstructure examination, and fracture area inspection of the damaged parts were performed. Fracture analysis results showed that a crack in the shape of a branch developed from the tool mark in the direction of the intergranular strain. Based on the results, the cause of fracture was confirmed to be stress corrosion.

전기저항 용접강관의 홈부식에 미치는 유동 해석 (Analysis of Flow on Grooving Corrosion at the Weld of a Carbon Steel pipe made by Electrical Resistance Welding)

  • 김용;장혁;류덕희;김재성;이보영;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1-6
    • /
    • 2004
  • Lots of researches were gone already about grooving corrosion mechanism of ERW carbon steel pipe. But there is seldom study for water hammer happened by fluid and acceleration of corrosion rate by incresed flow velocity. Therefore, in this study carried out the analysis based on hydrodynamic and fracture mechanics. Analyzed stress that act on a pipe using ANSYS as a program, and also FLUENT and STAR-CD were used for flow phenomenon confirmation. As the result, fatigue failure is happened by water hammer and corrosion rate was increased because of turbulent flow.

  • PDF