• 제목/요약/키워드: Corrosion density

검색결과 739건 처리시간 0.029초

해양 구조물용 강의 최적 방식전류밀도에 미치는 환경조건의 영향 (Effect of environmental condition on optimum corrosion protection current density for marine structure steel)

  • 이승준;박재철;장석기;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.321-321
    • /
    • 2015
  • 해수 환경에 노출된 대부분의 금속재료는 직 간접적으로 부식의 영향을 받는다. 이와 같이 해수에 침지된 금속재료의 부식 방지에는 음극방식법이 주로 사용되고 있다. 과거의 음극방식 설계에는 양극 크기와 방식전류 밀도, 소모율 등 양극 자체에 대한 변수만이 고려되었으나, 20여 년 전부터는 해수 오염도, 수온 및 유속 등을 종합적으로 고려하여 설계하고 있다. 특히 대부분의 금속은 부식성 환경에서 생성된 부동태 피막이 해수 유동에 의해 파괴되면서 급속히 손상된다. 따라서 본 연구에서는 해수 특성을 고려한 최적의 소요방식전류밀도 선정을 위해 전기화학실험을 실시하였다. 실험 결과, 해수 온도 상승에 따라 확산속도가 빨라져 최적 방식 전류밀도가 증가하는 경향을 나타냈다.

  • PDF

냉각속도에 따른 Al-2.7wt%Li 합금계의 응고조직 (Solidification Structure of Al-2.7wt%Li Alloys by Cooling Rate Controlled)

  • 심동섭;최정철;조형호;권해욱
    • 한국주조공학회지
    • /
    • 제11권5호
    • /
    • pp.398-405
    • /
    • 1991
  • Al-Li alloy has a high strength with low density. Practically this alloy should use by the material which made from the rapid solidification. Therefore we examine the solidification structures of alloy with cooling rate. According to cooling rate increased, grain size and secondary dendrite arm spacing were smaller. Also grain size was further smaller by Zr added. To obtain more fine solidification structure, rapid solidification by single roll melt spinning was performed. According to higher wheel speed, cooling rate increased and cell size was smaller. Because of locally different cooling rate, different cell size was obtained in same specimen. More than cooling rate $10^6^{\circ}C$ /sec, zone A(insensible zone to corrosion)was obtained.

  • PDF

New Surface Treatment Process in Magnesium Alloy for Wheelchair

  • Han, Byung-Kuk
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.112-115
    • /
    • 2013
  • One of the most important characteristics of Mg alloys is the high ratio of strength to weight. This is why there is a high demand for applications with these alloys in the transportation industries to reduce the fuel consumption and to save energy. In addition, magnesium (and its alloys) is of considerable interest as a structural material, especially in the aerospace and automotive industries thanks to its low density. However, its major drawback is its high sensitivity to corrosion. Therefore, its use requires the application of a surface treatment. This study used a die-casted AZ91D Mg alloyand all the samples were annealed (in $120^{\circ}C$). The surface microstructure and phase distribution in thin-walled AZ91D magnesium components cast on a hot-chamber die-casting machine were investigated by optical microscopy and scanning electron microscopy. The reflectance differences in the bulk state comparison with the annealing state are caused by hydrogenation presence of the Mg layer under an oxidation surface layer.

海水中 Al-Zn-In 合金陽極의 分極特性에 미치는 Ca-Si 添加의 影響 (Influence of Ca-Si Addition on Anodic Polarization Chgaraqcteristics of Al-Zn-In Anodes)

  • 서창제
    • 한국표면공학회지
    • /
    • 제12권1호
    • /
    • pp.3-10
    • /
    • 1979
  • Many excellent Al-Zn-In anode have been developed up to the present. But for the purpose of the better performance of Al-Zn-In anodes in sea water the effect of calcium silicon addition on anodic polarization and current capacity of Al-Zn-In anodes was measured and analysed in sea water and artificial sea water. The results and conclusions obtained are summarized as follows. 1) Being compared with Al-Zn-In anodes, Al-Zn-In anodes containing 0.05% calcium silicon had superior characteristics in both anodic polarization and current capacity. 2) Corrosion patterns of the anodes containing calcium silicon were much more uniform than those of Al-Zn-In anodes. 3) In this experiment the most useful anode was Al-4% Zn-0.03% In-0.05% (Ca-Si). It had a capacity of 2.60Amp-hr of current/g and a voltage of 1.13(SCE reference) at anodic current density 1,000 4{\mu}A/cm^2$.

  • PDF

무전해 니켈 도금액 제조 (Preparation of Stock Solution for Electroless Nickel)

  • 정승준;최효섭;박종은;손원근;박추길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.621-624
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed boards(PCR) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor meta1s, such as Al and Cu and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure. wear resistance, corrosion protection and thermal stability In this study fundamental aspects of electroless nickel deposition were studied with effort of complexeing agents of different kinds. Then the property of electroless deposit are controlled by the composition of the deposition solution the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

Theoretical study of cross sections of proton-induced reactions on cobalt

  • Yigit, Mustafa
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.411-415
    • /
    • 2018
  • Nuclear fusion may be among the strongest sustainable ways to replace fossil fuels because it does not contribute to acid rain or global warming. In this context, activated cobalt materials in corrosion products for fusion energy are significant in determination of dose levels during maintenance after a coolant leak in a nuclear fusion reactor. Therefore, cross-section studies on cobalt material are very important for fusion reactor design. In this article, the excitation functions of some nuclear reaction channels induced by proton particles on $^{59}Co$ structural material were predicted using different models. The nuclear level densities were calculated using different choices of available level density models in ALICE/ASH code. Finally, the newly calculated cross sections for the investigated nuclear reactions are compared with the experimental values and TENDL data based on TALYS nuclear code.

불화물계 용융염중에서 Steel 기지 소재의 Al 전해피복에 관한 연구 (A Study on Metalliding of Al on Steel from Molten Fluorides)

  • 이민구;서길원;백영현
    • 한국표면공학회지
    • /
    • 제26권4호
    • /
    • pp.183-191
    • /
    • 1993
  • Diffusion coating(metalliding) of aluminium on steel from molten fluorides(29.2wt.% LiF-11.7wt.% NaF-59.1wt.% KF, FLINAK) was studied. The electrolytic cell consists of a steel cathode and a consumable aluminium anode. Effects of manganese on the aluminium deposition were also investigated. The quality of the deposit was analyzed by SEM, OM, EPMA, EDXA, and also examined by means of Micro-Vickers hardness and corrosion tests. Deposit layer was identified as an aluminium-rich iron alloy caused by diffusion process. The optimum condition for the metalliding was found to be the current density, 50 to $150mA/\textrm{cm}^2$, the bath tem-perature, $57.5^{\circ}C$, and the amount of AlF3, 10wt.%. Addition of manganese fluoride (up to 5wt.%) as a co-de-posit element improved significantly the quality of the deposit layer.

  • PDF

Mechanical and wear properties of HPT-biomedical titanium: A review

  • Mohammed, Mohsin Talib
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권3호
    • /
    • pp.185-196
    • /
    • 2015
  • Titanium (Ti) based alloys are widely used in biomedical implants due to their low density, excellent corrosion resistance and good biocompatibilities. In recent years, growing interest in sever plastic deformation (SPD) has stimulated research and development on the techniques to attain refining of the grain size to the submicrometer or even nanometer level. The mechanical and wear properties determining the application of Ti in medicine may be improved via SPD. High pressure torsion (HPT) technique is one of the approaches available for improving the mechanical and wear properties of biomedical Ti materials. Accordingly, this article is designed to examine most recent state of the art scientific works related to the developments in mechanical properties and wear resistance of biomedical Ti materials processed by HPT. A comprehensive review in this area is systematically presented.

Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids

  • Anupama, A.V.;Kumaran, V.;Sahoo, B.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.347-357
    • /
    • 2018
  • Steady shear response of a magnetorheological fluid (MRF) system containing porous mono-disperse magnetite ($Fe_3O_4$) spheres synthesized by solvothermal method is demonstrated. In applied magnetic field the interaction between the spherical particles leads to form strong columnar structures enhancing the yield strength and viscosity of the MRFs. The yield strengths of the MRFs also scale up with the concentration of magnetic particles in the fluid. Considering magnetic dipolar interaction between the particles the magneto-mechanical response of the MRFs is explained. Unlike metallic iron particles, the low-density corrosion resistant soft-ferrimagnetic $Fe_3O_4$ spherical particles make our studied MRF system efficient and reliable for shock-mitigation/vibration-isolation applications.

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao;Ilwhan Oh
    • 전기화학회지
    • /
    • 제26권2호
    • /
    • pp.19-34
    • /
    • 2023
  • Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.