• Title/Summary/Keyword: Corrosion compounds

Search Result 147, Processing Time 0.021 seconds

Investigation on the Effect of Corrosion Inhibitor on Removal Rate and Surface Characteristic of Cobalt Chemical Mechanical Polishing (부식 방지제에 따른 코발트의 화학 기계적 연마 특성 및 표면 분석)

  • Eun Su Jung;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.140-154
    • /
    • 2024
  • As the trend towards miniaturization in semiconductor integration process, the limitations of interconnection metals such as copper, tungsten have become apparent, prompting research into the emergence of new materials like cobalt and emphasizing the importance of studying the corresponding process conditions. During the chemical mechanical polishing (CMP) process, corrosion inhibitors are added to the slurry, forming passivation layers on the cobalt surface, thereby playing a crucial role in controlling the dissolution rate of the metal surface, enhancing both removal rate and selectivity. This review investigates the understanding of the cobalt polishing process and examines the characteristics and behavior of corrosion inhibitors, a type of slurry additive, on the cobalt surface. Among the corrosion inhibitors examined, benzotriazole (BTA), 1,2,4-triazole (TAZ), and potassium oleate (PO) all improved surface characteristics through their interaction with cobalt. These findings provide important guidelines for selecting corrosion inhibitors to optimize CMP processes for cobalt-based semiconductor materials. Future research should explore combinations of various corrosion inhibitors and the development of new compounds to further enhance the efficiency of semiconductor processes.

Natural Occurring Substances as Corrosion Inhibitors for Tin inSodium Bicarbonate Solutions (중탄산소듐 용액에서 납의 부식방지제인 자연산물질들)

  • Abdallah, M.;El-Etre, A. Y.;Abdallah, E.;Eid, Salah
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.485-490
    • /
    • 2009
  • The inhibitive action of the aqueous extract of lawsonia, licorice root and carob toward the corrosion of tin electrode in 0.1 M $NaHCO_3$ solutions was investigated using galvanostatic polarization measurements. It was found that the corrosion rate decreases in the presence of these extracts indicating the inhibiting of these compounds. The inhibition efficiency increases with increasing extract concentration. The inhibition action of these extracts was explained in view of adsorption of its compounds onto the tin surface, making a barrier to mass and charge transfer. The adsorption of these extracts on the tin surface was found to be a spontaneous process and follow Freundlich adsorption isotherm. It is also found that these extracts provide a good protection to tin against pitting corrosion in chloride containing solution using potentiodynamic anodic polarization technique.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

지하수질에 따른 배관부식 상태와 이의 해결방안 연구

  • 김윤영;김정진;김형수;원종호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.263-266
    • /
    • 2002
  • The purpose of this study is to clarify the reasons of pipe corrosion and well clogging which are taken place in long term bank filtering and to establish countermeasure of them in the alluvium of Goryeong Gun, Dasan Myeon, Nakdong River It is believed that the scale inside the pipe is not caused by only iron hydroxides but compounds consisted with some carbonate and silicate minerals. For the removal of the scales, it is desirable to loosen the bonds of the scale itself by dissolving the carbonate and silicate minerals after detailed study of the scale compounds.

  • PDF

Effects of anti-corrosion of the Al alloy film by the post-etch treatment (플라즈마 식각후 처리에 의한 Al alloy막의 부식 억제 효과)

  • 김환준;이철인;최현식;권광호;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.413-417
    • /
    • 1997
  • In this study, chlorine(Cl)-based gas chemistry is generally used to etching for AlCu films metallization. The corrosion phenomena of AlCu films were examined with XPS (X-ray photoelectron spectroscopy), SEM (Scanning electron microscopy), and TEM (Transmission electron microscopy). SF$\sub$6/ plasma treatment subsequent to the etch process prevents the corrosion effectively in the pressure of 300 mTorr. It is found that the chlorine atoms on the etched surface are not substituted for fluorine atoms during SF$\sub$6/ treatment, but a passivation layer on the surface by fluorine-related compounds would be formed. The passivation layer prevents the moisture penetration on the SF$\sub$6/ treated surface and suppresses the corrosion successfully.

  • PDF

Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy (주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.

The Influence of H+ and Cl- Ions on the Corrosion Inhibitive Effect of Poly(para-aminophenol) for Iron in Hydrochloric acid

  • Manivel, P.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2017
  • Polymer amines are found to show distinct corrosion inhibition effects in acidic media. The functional groups of organic compounds have a wide role in the physical and chemical properties, for the inhibition efficiency with respect to steric factors, aromaticity, and electron density. The influence of $H^+$ ions and $Cl^-$ ions on the corrosion inhibitive effect of poly(p-aminophenol) for iron in hydrochloric acid was studied using electrochemical methods such as impedance, linear polarization, and Tafel polarization techniques. The experiments were conducted with and without the inhibitor, poly(p-aminophenol). The concentration range of $H^+$ ions and $Cl^-$ ions are from 1 M to 0.05 M and 1 M to 0.1 M, respectively. With the inhibitor poly(p-aminophenol), this study shows that inhibition efficiency decreases with the reduction of $H^+$ ion and $Cl^-$ ion concentrations in aqueous solution. Further, it reveals that the adsorption of an inhibitor on the surface of iron is dependent on the concentrations of $H^+$ and $Cl^-$ ions in the solution and the adsorption of inhibitor on the iron surface through the cationic form of amine.

Experimental Investigation and Quantum Chemical Calculations of Some (Chlorophenyl Isoxazol-5-yl) Methanol Derivatives as Inhibitors for Corrosion of Mild Steel in 1 M HCl Solution

  • Sadeghzadeh, Rogayeh;Ejlali, Ladan;Eshaghi, Moosa;Basharnavaz, Hadi;Seyyedi, Kambiz
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.155-167
    • /
    • 2019
  • In this study, two novel Schiff base compounds including (3-(4-Chlorophenyl isoxazole-5-yl) methanol and (3-(2,4 dichlorophenol isoxazole-5-yl) methanol as corrosion inhibitors for mild steel in 1 M hydrochloric acid solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and density functional theory (DFT) computations. The results showed that the corrosion inhibition efficiency (IE) is remarkably enhanced with the growing concentration of the Schiff base inhibitors. The results from Tafel polarization and EIS methods showed that IE decreases with gradual increments of temperature. This process can be attributed to the displacement of the adsorption/desorption balance and hence to the diminution of the level of a surface coating. Also, the adsorption of two inhibitors over mild steel followed the Langmuir adsorption isotherm. Too, the results of the scanning electron microscope (SEM) images showed that the Schiff base inhibitors form an excellent protective film over mild steel and verified the results by electrochemical techniques. Additionally, the results from the experimental and those from DFT computations are in excellent accordance.

Enhancing Effects of NaHSO3 on Corrosion of T91 Steel

  • Wu, Tangqing;Tan, Yao;Wang, Jun;Xu, Song;Liu, Lanlan;Feng, Chao;Yin, Fucheng
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.368-378
    • /
    • 2020
  • In the paper, corrosion behavior of T91 steel in different concentrations of NaHSO3 solution was studied in combination with scanning electron microscope (SEM) and electrochemical measurements. The results showed that the steel exhibited active anodic dissolution characteristics in the solution, and NaHSO3 concentration affected both cathodic and anodic behaviors. The steel surface was covered by intact corrosion products in the solutions, but the compactness and mechanical properties of the corrosion products degraded with the increase of NaHSO3 concentration. In low-concentration NaHSO3 solution the steel tended to undergo uniform corrosion with slight corrosion pits, but its corrosion mode gradually transited to localized corrosion as the NaHSO3 concentration increased. The mechanical property degradation of the corrosion products caused by sulfur compounds and the pH decrease of the solution are the important factors to accelerating its corrosion process.

Corrosion Characteristics by Oxidizers for Copper CMP Slurry (구리 CMP 슬러리중 산화제의 부식 특성)

  • Lee, Do-Won;Kim, In-Pyo;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.339-342
    • /
    • 2003
  • The corrosion characteristics of Copper by oxidizers in Cu CMP slurry has been investigated. Key experimental variables that has been investigate are the corrosion rate by different oxidizers containing slurry of Cu CMP. Oxidizers in Cu CMP slurry reacts with Cu surfaces to raise the oxidation state of the metal via a reduction-oxidation reaction, resulting in either dissolution of the Cu or the formation of Ta surface film on the metal.[1] When Cu films were corroded adding each oxidizer, corrosion rate increased as much as higher Icorrosion. The corrosion rate of Cu was the largest as added $(NH_4)_2S_2O_8$. The higher content of Urea Hydrogen peroxide was, the higher corrosion rate was measured. Putting in tartaric acid as complexing agent, the corrosion rates of the compounds(Urea hydrogen peroxide+$H_2O_2$) are uniformly. As a result of Cu corrosion by $Cu(NO_3)_2$, the high corrosion rate was determined by even small amounts of $Cu(NO_3)_2$. Consequently, this can be explained by assuming that corrosion by oxidizers has primary effects on the removal rate of Cu and the proper oxidizer needs to be chosen in accordance with relationship of each slurry agent.

  • PDF