• Title/Summary/Keyword: Corrosion compounds

Search Result 147, Processing Time 0.021 seconds

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

An Experimental Study of Corrosion Characteristics and Compounds by Corrosion Factors in Iron Artifacts (철제유물 부식인자에 대한 부식양상 및 부식화합물 실험 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.33-43
    • /
    • 2012
  • The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.

  • PDF

Corrosion in Oil well Stimulation Processes Caused by Different Chelating Agents Based on EDTA Compounds

  • Calderon, J.A.;Vasquez, F.A.;Arbelaez, L.;Carreno, J.A.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2017
  • Chelating solutions can be damaged by strong acids during oil production. To design effective corrosion inhibitors and other alternatives for corrosion control, it is important to understand not only the behavior of the system under operating condition but also the kinetics of electrochemical reactions during the corrosion process. In this study, the electrochemical behaviors of P-110 steel in aqueous fluids based on ethylenediaminetetraacetic acid (EDTA) compounds under various temperatures and hydrodynamic regime conditions were assessed. Electrochemical measurements were conducted using rotating disc electrodes manufactured. Electrolytes were prepared using aqueous compounds of EDTA like diammonium salt, disodium salt, and tetrasodium salt. Potentiodynamic polarization, electrochemical impedance, and mass loss tests were performed in order to assess the corrosion kinetic in electrolytes. Hydrodynamic effects were observed only in the cathodic polarization curve. This proves that hydrodynamic regime plays an important role in the corrosion of steel mainly in disodium and diammonium EDTA solutions. Two cathodic reactions controlled the corrosion process. However, oxygen level and pH of the electrolyte played the most important role in metal corrosion. Corrosion rates in those fluids were decreased drastically when oxygen concentration was reduced.

Electrochemical Adsorption Properties and Inhibition of Zinc Corrosion by Two Chromones in Sulfuric Acid Solutions

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Saber, Ahmed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.160-168
    • /
    • 2014
  • The electrochemical behavior and corrosion inhibition of zinc in 0.5 M $H_2SO_4$ in the absence and presence of some chromones has been investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The presence of these investigated compounds in the corrosive solutions decrease the weight loss, the corrosion current density, and double layer capacitance but increases the charge transfer resistance. Polarization studies were carried out at room temperature, and showed that all the studied compounds act as mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were determined and discussed. The adsorption of the investigated compounds on zinc was found to obey Langmuir adsorption isotherm.

Effects of Corrosion Inhibitor on Corrosion of Al-based Alloys in Ethylene Glycol-Water Coolant Environment

  • Gwang-Soo Choi;Young-Man Kim;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.305-313
    • /
    • 2023
  • The objective of this study was to investigate the effectiveness of sodium dodecyl benzene sulfonate (SDBS) as a corrosion inhibitor on the pitting corrosion behavior of aluminum alloys used in electric vehicle battery cooling systems within a mixture of ethylene glycol and water (EG-W) coolant. Potentiodynamic polarization testing revealed unstable passive film formation on the aluminum alloys in the absence of SDBS. However, the addition of SDBS resulted in a robust passive film, enhancing the pitting corrosion resistance across all examined alloys. Pitting corrosion was predominantly observed near intermetallic compounds in the presence of Cl? ions, which was attributed to galvanic interactions. Among tested alloys, A1040 demonstrated superior resistance due to its lower areal fraction of precipitates and donor density. The incorporation of SDBS inhibitors mitigated the overall pitting corrosion process by hindering Cl? ion penetration. These findings suggest that SDBS can significantly improve pitting corrosion resistance in aluminum alloys employed in battery coolant environments.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Application Study of Raman Micro-Spectroscopy for Analysis on Corrosion Compound of Iron Artifacts (철제유물 부식화합물 분석의 표준데이터 확보를 위한 라만 분광법 적용성 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.89-98
    • /
    • 2011
  • It is quite difficult to identify its corrosion compound because they have a wide variety of crystal structures and they are mixed with two component. This study was conducted with the standard iron corrosion compounds through the analysis by Raman Micro-Spectroscopy, which aims to obtain standard Raman Data. To assess the reliability of standard iron corrosion compounds, SEM-EDS analysis and XRD analysis were conducted. Through SEM-EDS analysis, the elements of corrosion compound matched with those of standards iron corrosion compounds except Goethite. XRD analysis showed that the structures of corrosion compounds were identical to those of standard iron corrosion compounds, however, it was identified that Iron sulfate ($FeSO_4{\cdot}6H_2O$) is the Rozenite ($FeSO_4{\cdot}4H_2O$). Through Raman Micro-Spectroscopy analysis, the new peak was detected from the wavenumbers of hydroxide and iron oxide. It is considered that it is due to changes in the wavelength of the laser. As the wavenumbers of iron chloride and iron sulfate have been identified, eight kinds of Raman Data were obtained. It can be considered to contribute to cultral heritage for iron objects that Raman Micro-Spectroscopy analysis which is relatively easy to compare material properties and structures can be highly applicable to the research on cultural heritage with the limited amount of samples.

  • PDF

The Inhibition of C-steel Corrosion in H3PO4 Solution by Some Furfural Hydrazone Derivatives

  • Fouda, A.S.;Badr, G.E.;El-Haddad, M.N.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.124-132
    • /
    • 2008
  • effect of some furfural hydrazone derivatives (I -V) as corrosion inhibitors for C-steel in 3M H3PO4 solution in which M indicates mol/l has been studied using weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated compounds. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide and thiocynate ions enhances it to a considerable extent. The effect of temperature on the corrosion behavior of C-steel was studied in the range from 30-60oC with and without 510-6 M investigated compounds using weight-loss method. Apparent activation corrosion energy (Ea*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The polarization measurements show that the investigated compounds act as mixed-type inhibitors, but the cathode is more polarized when an external current was applied. The adsorption of these compounds on the surface of C-steel in 3M H3PO4 obeys Frumkins adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the investigated compounds.

A New Technology of Anti-corrosive of Metals in Atmospheric Environment

  • Chen, Ke Zhong
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.194-196
    • /
    • 2003
  • In this paper, a newest kind of anti-atmospheric corrosion method is introduced. This method does not adopt organic coating, plastic layer or metal plating, instead it adopts a kind of aqueous emulsion containing numerous tine solid compounds that are absorbed onto the component surface, which play the role of anti-electrochemical corrosion.

The Effect of Imidazole and 2-Methyl Imidazole on the Corrosion of Mild Steel in Phosphoric Acid Solution

  • Chandrasekara, V.;Kannan, K.;Natesan, M.
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.191-200
    • /
    • 2005
  • Two azole compounds viz., Imidazole (IM) and 2-Methylimidazole (2-MIM) were studied to investigate their inhibiting action on corrosion of mild steel in phosphoric acid ($H_3PO_4$) solution by mass loss and polarization techniques at 302K-333K. It has been found that the inhibition efficiency of the all inhibitors increased with increase in inhibitor concentration and decreases with increasing temperature and also with increase in acid concentrations. The inhibition efficiency of these compounds showed very good inhibition efficiency. At 0.5% of IM and 2-MIM in 1N and 5N phosphoric acid solution at 302K to 333K for 5 hours immersion period, the inhibition efficiency of 2-Methylimidazole found to be higher than Imidazole. The adsorption of these compounds on the mild steel surface from the acids has been found to obey Tempkin's adsorption isotherm. The values of activation energy ($E{\alpha}$) and free energy of adsorption (${\Delta}G{\alpha}ds$) were also calculated. The plots of log $W_f$ against time (days) at 302K give straight line which suggested that it obeys first order kinetics and also calculate the rate constant k and half life time $t_{1/2}$. Surface was analyzed by SEM and FITR spectroscopy.