• Title/Summary/Keyword: Corrosion behavior

Search Result 1,274, Processing Time 0.03 seconds

Corrosion Behavior of TiN Ion Plated Steel Plate(I) -Effects of Ti interlayer and TiN coating thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I) - Ti 하지 코팅 및 TiN 코팅 두께의 영향 -)

  • 연윤모;한전건;김대진;배은현
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating. TiN was arc ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, $2\mu\textrm{m}$ and $3\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N $H_2$SO$_4$ as well as salt spray test. Porosity of each coating was also tested by using $SO_2$ test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of $2\mu\textrm{m}$ and $3\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Shin, Joong-Ha;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.325-330
    • /
    • 2010
  • Many surface protection methods have been developed to apply for constructional steels used under severe corrosive environment. Thermal spray coating has been known to be an attractive technique due to its relatively high coating speed. Furthermore high corrosion resistance of coated film with thermal spray is required to expand its application. Four types of coated films(DFT:300 um) such as pure zinc, pure aluminum and two Al-Zn alloy (Al:Zn=85:15 and Al:Zn=95:5) onto the carbon steel (SS401) were prepared with arc spray, and the corrosion behavior of their samples were evaluated by electrochemical method in this study. Pure aluminum sample showed high corrosion resistance behavior exposed to sea water solution and pure zinc and alloy (Al:Zn=95:5) samples followed pure aluminum sample. The other alloy(Al:Zn=85:15) so called galvalume coated onto the carbon steel ranks the 4th corrosion resistance in this study. The results of porosity ratio of those samples by observation are well matched with the electrochemical data.

Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate (PEMFC 금속 분리판용 316L 스테인리스강의 전기화학적 특성 및 손상 거동에 미치는 온도 및 염화물 농도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.300-313
    • /
    • 2022
  • Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration on the electrochemical characteristics and damage behavior of 316L stainless steel in an accelerated solution simulating the cathodic operating condition of PEMFC(Polymer electrolyte membrane fuel cell). As a result of the experiments, the corrosion current density, damage size, and surface roughness increased as the temperature and chloride concentration increased. In particular, the temperature had a significant effect on the stability of the oxide film of 316L stainless steel. In addition, it was described that the growth of the pit was affected by the chloride concentration rather than the temperature. As a result of calculating the corrosion tendency to compare the pitting corrosion rate and the uniform corrosion rate, the uniform corrosion tendency became larger as the temperature increased. And the effects of chloride concentration on corrosion tendency was different according to temperature.

Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel (오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석)

  • Won, S.Y.;Kim, G.B.;Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

Atmospheric Corrosion of Rolling Stock Structures (철도차량 구조물의 대기부식 특성)

  • Chang Se-Ky;Kim Yong-Ki;Oh Chang-Rok;Goo Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.663-667
    • /
    • 2004
  • Underframes of rolling stock structure are made of hot rolled steel of SS400 or SM490A. While these underframe steels are designed to satisfy the mechanical requirements, their corrosion behavior also should taken into account. Underframes are coated to prevent corrosion, but they are often defected by external factors to result in local corrosion which may cause the weakness of mechanical strength. Thus, the corrosion of underframe steels was examined through atmospheric corrosion test to estimate service life and safety.

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

CLADDING TO SUSTAIN CORROSION, CREEP AND GROWTH AT HIGH BURN-UPS

  • Wikmark, Gunnar;Hallstadius, Lars;Yueh, Ken
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.143-148
    • /
    • 2009
  • The increasing power and other demands on PWR fuel is leading to a demand for cladding that has low corrosion but that should also be robust with regard to mechanical behavior, impact of the irradiation environment and the coolant chemistry. The Optimized $ZIRLO^{TM}$ cladding is an evolutionary development of $ZIRLO^{TM}$ taking advantage of the long experience of the ZIRLO cladding but has significantly improved corrosion behavior. Recently, operation of Optimized ZIRLO to above 73 kWd/kgU has shown a reduction of the corrosion of almost 50%.

Corrosion Behavior Analysis of the Weld Joint between Stainless Steel and Carbon Steel (스테인레스강과 탄소강 용접부의 부식거동 해석)

  • 권재도;이우호;장순식;진영준;문윤배
    • Proceedings of the KWS Conference
    • /
    • 1997.05a
    • /
    • pp.35-38
    • /
    • 1997
  • In order to investigate quantitative behavior of galvanic corrosion in the weld joint between stainless steel and carbon steel, electrochemical polarization experiments are performed for various pH, water temperature with boric acid concentration 4000ppm. The corrosion rate of stainless steel was almost independent of the variation of pH. The significant corrosion rates of carbon steel and the weld joint of carbon-carbon steel were observed at pH 4. The corrosion rates in the weld joint of the carbon-stainless steel were observed depending on the variation of pH level.

  • PDF

Study on the Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layers (집합조직이 존재하는 TiN 코팅 층의 마찰, 마멸, 내부식 특성에 관한 연구)

  • 김희동;김인수;성동영;이민구
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.394-400
    • /
    • 2003
  • TiN coated films exhibit excellent mechanical properties such as high wear, erosion and corrosion resistances and a high thermal stability. Therefore, they are widely applied to a coating material in tools, ornaments, parts and semiconductors. However, the fracture of TiN coated films frequently occurs. The distribution of preferred orientations, i.e., texture, of TiN coated films strongly influences the fracture behavior of these films. In the present study. various TiN coating layers having different textures were prepared by the reactive ion physical vapor deposition and the texture dependence of friction coefficient, erosion and corrosion in these coating layers was investigated. The sample depicting the (115) texture parallel to the coating layer normal displayed a flatter surface than that observed from the sample having the (111) texture. The friction coefficient of TiN thin films was hardly dependent on the texture of coated samples. The samples having (115) texture displayed higher wear, erosion and corrosion resistances than the samples having (111) texture.