• Title/Summary/Keyword: Corrosion Protection Methods

Search Result 81, Processing Time 0.026 seconds

Fundamental Study on Cathodic Protection and Material Development as Erosion - Control Methods of Oceanic Centrifugal Pump(2) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 (2))

  • 이진열;임우조;오인호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.24-31
    • /
    • 1996
  • Recently, with the rapid development in the oceanic systems such as the oceanic structures and vessel, there occurs much interest in the impingement erosion-corrosion. In this paper, Cu-metal was tested by using of erosion apparatus with water-jet type and was investigated under the behaviour of impingement erosion-corrosion according to various environmental conditions, and the properties of Cu-metal were evaluated through the measurement by weight loss, weight loss rate, protective efficiency. The results were compared with those obtained using Cu-metal applied to cathodic protection and Cu-alloys added to Zn or Al-metal. As a basis of those results, the best protective efficiencies could be taken as using cathodic protection method and Cu-alloy with Al & Zn material addings, and will be suggested as the fundamental data of the anti-impingement erosion-corrosion on Cu-metal of impeller material for oceanic centrifugal pump.

  • PDF

Crystal Structure Control of Calcareous Deposit Films Formed by Pulse Electrodeposition Process in Seawater and Their Properties (해수 중 펄스 전착 프로세스 의해 제작한 석회질 피막의 결정구조 제어 및 특성 평가)

  • Park, Jun-Mu;Lee, Seung-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • As an anti-corrosion method in seawater, cathodic protection is widely recognized as the most effective and technically appropriate corrosion prevention methodology for marine structures against harsh corrosive environment. When applying the cathodic protection in seawater, the surface of the metal facilities the formation of compounds of $CaCO_3$ and $Mg(OH)_2$. These mixed compounds are generally called 'calcareous deposits'. This layer functions as a barrier against the corrosive environment and functions to further inhibit the corrosion process and then leading to a decrease in current demand for cathodic protection. However, calcareous deposit films are partially formed on the surface of the cathode and there are some difficulties to maintain both a corrosion resistance for a long period of time and a strong adhesion between deposits and base metal. In this study, the pulse electrodeposition process was applied to improve adhesion and corrosion resistance of the calcareous deposit films, and to solve the problem of hydrogen embrittlement at high current density. The uniform and compact calcareous deposit films were prepared by pulse electrodeposition process, and their properties were characterized using various surface analytical techniques together with electrochemical methods.

Effect of the Chathodic Protection in Concrete by Applying Sacrificial Anode System (희생양극방식을 응용한 콘크리트 중의 철근의 전기방식 효과)

  • 김성수;김홍삼;김진철;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.87-92
    • /
    • 2001
  • Reinforced concrete have defect in durability due to carbonation, freezing and thawing, and penetration of chloride ions with time in spite of superb structure. Especially steel corrosion in concrete due to penetration of chloride ions have result in a marked decline in service life. The principal purpose in this study is to see effect of sacrificial anode cathodic system, one of the electrochemical methods in order to the control of steel corrosion in concrete. There are chloride content in concrete in cracked and no cracked specimen with cathodic protection. To recognize the effect of sacrificial anode cathodic protection, Instant-off potential are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Shin, Joong-Ha;Lee, Myung-Hoon;Lee, Sung-Yul;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.670-677
    • /
    • 2010
  • There are many surface protection methods for numerous steel structures being used under severely corrosive environment, one of them, metallizing(thermal spray) is a available protection method which is comparatively and recently developed for surrface protection of various steel structures. However coating film obtained by spraying is to be needed increasingly more good corrosion resistance due to accelerating of environmental contamination. In this study, coating films(DFT:$200{\mu}m$) are performed with arc spray by wire metal and their types of films are pure zinc, pure aluminum, alloy film(Al:Zn=85:15) and alloy film(Al:Zn=95:5). And corrosion resistance of their films was investigated with electrochemical methods in seawater solution. Pure aluminum film showed a relatively somewhat good corrosion resistance compared to among those of other films and alloy films also showed a good corrosion resistance compared to pure zinc film. Especially it was observed that pure aluminum film showed a comparatively good corrosion resistance than that of alloy film named as galvarium spray(Al:Zn=85:15) in seawater solution. Morphology of corroded surface of pure zinc film appeared the pattern like intergranlar corrosion, however films of pure aluminum and alloy metal showed a general corrosion pattern.

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.65-70
    • /
    • 2007
  • There are many kinds of protection methods for marine structures, with varyingeconomical and environmental advantages. The coating protection method is being widely used in both continental and marine structures. In this study, by adding some additives, such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect on the corrosion resistance was investigated throughan electrochemical method. The additive of Zn(20)+CB(10) showed the lowest passivity current density. Polarization resistance in both cyclic voltammogram and impedance measurement of an additive of Zn(20)+CB(10) was also the largest value, compared to other additives. Furthermore, rusting and bubbling was not observed on the surface of the test specimen with the additive of Zn(20)+CB(10), compared to other specimens. It is suggested that the corrosion resistance of the anti-corrosive paint can be improved by using some additives.

Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum (알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사)

  • Seo, Youngkyun;Jung, Jung-Yeul
    • Plant Journal
    • /
    • v.16 no.3
    • /
    • pp.47-52
    • /
    • 2020
  • This study investigated the methodologies to enhance the corrosion resistance and the ways to measure for subsea equipment made of aluminum. The methodologies for the anticorrosion were cathodic protection, conversion coating, anodizing and organic coating. The simply analyzed ways to measure the corrosion resistance were Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), contact angle and interfacial tension. The most widely used tools for increasing the corrosion resistance were the anodizing and the organic coating. Many ways were evenly used to measure corrosion. The methods more frequently utilized were SEM for the surface investigation and the contact angle to evaluate the corrosion resistance.

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Shin, Joong-Ha;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.325-330
    • /
    • 2010
  • Many surface protection methods have been developed to apply for constructional steels used under severe corrosive environment. Thermal spray coating has been known to be an attractive technique due to its relatively high coating speed. Furthermore high corrosion resistance of coated film with thermal spray is required to expand its application. Four types of coated films(DFT:300 um) such as pure zinc, pure aluminum and two Al-Zn alloy (Al:Zn=85:15 and Al:Zn=95:5) onto the carbon steel (SS401) were prepared with arc spray, and the corrosion behavior of their samples were evaluated by electrochemical method in this study. Pure aluminum sample showed high corrosion resistance behavior exposed to sea water solution and pure zinc and alloy (Al:Zn=95:5) samples followed pure aluminum sample. The other alloy(Al:Zn=85:15) so called galvalume coated onto the carbon steel ranks the 4th corrosion resistance in this study. The results of porosity ratio of those samples by observation are well matched with the electrochemical data.

A Study on the Protection of the Bare and Painted Steel Plates (아연 양극에 의한 도장강판과 나강판의 방식 연구)

  • 문경만;김종신;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Galvanic protection method is one the cathodic protection methods and is mostly used for corrosion prevention of heat exchangers and ship's hull. In this paper, it was investigated that how cathodic potential distribution was varied with according to the bare and painted steel plates in case of galvanic anode protection. The results obtained above were as follows. 1. Cathodic potential distribution of a painted steel plate was smoothed than that of the bare steel plate all over the cathodic surface area. 2. It was shown that polarization potential of the bare steel plate was somewhat shifted to negative potential, on the contrary that of the painted steel plate was somewhat shifted from negative potential to positive potential as time gone by beginning of galvanic anode method. 3. The applied current density in order to maintain constant protection potential(-770mv SCE) in the painted steel plate was less than that of the bare steel plate because of the high resistance polarization of the painted steel plate. 4. It was suggested that required number and life-time of anode for galvanic anode protection could be decided easily with corrosion prevention coefficient obtained by experimental data.

  • PDF

Exploiting the Anticorrosion Effects of Vernonia Amygdalina Extract for Protection of Mild Steel in Acidic Environments

  • Adindu, Blessing;Ogukwe, Cynthia;Eze, Francis;Oguzie, Emeka
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • The corrosion protection of mild steel in 1M HCl and 0.5M $H_2SO_4$ solutions by ethanol extract of Vernonia amygdalina (VA) was studied using a combination of experimental and computational methods. The obtained results revealed that VA reduced the corrosion of mild steel in both environments and inhibition efficiency increased with VA concentration but decreased with prolonged exposure. Electrochemical results showed that the extract functioned via mixed corrosion inhibiting mechanism by adsorption of some organic constituents of the extract on the metal/acid interface. Findings from infrared spectroscopy and electron microscopy all confirmed that VA retarded mild steel corrosion in both 1M HCl and 0.5M $H_2SO_4$ through an adsorption process. The adsorption behavior of selected constituents of the extract was modeled using density functional theory computations.