• 제목/요약/키워드: Corrosion Properties

검색결과 1,752건 처리시간 0.025초

콘크리트 중의 염소이온 확산 특성에 관한 실험적 연구 (A Experimental Study on the Chloride Diffusion Properties in Concrete)

  • 박승범;김도겸
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.33-44
    • /
    • 2000
  • Since the mechanism of chloride diffusion and its ratio in concrete depend on structural conditions and concrete as a micro-structure, if these are analyzed quantitatively, the long-term ageing of structures can be predicted. Although, a quantitative analysis of concrete micro-structure, in which the results are affected by various parameters, is very difficult, this can be done indirectly by the durability test of concrete. In this study, the compressive strength, void ratio and air permeability of concrete. In this study, the compressive strength, void ratio and air permeability of concrete are chosen as the parameters in concrete durability test, and these effects on test results are analysed according to changes of mixing properties. The relationships between parameters and chloride diffusion velocity is used for prediction models of chloride diffusion. The developed prediction models for the chloride diffusion according to mixing and physical properties, can be used to estimate the service life and corrosion initiation of reinforcing bars in marine structures.

선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구 (Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships)

  • 김성종;고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

  • Chang, Hyun-Young;Park, Heung-Bae;Park, Yong-Soo;Kim, Soon-Tae;Kim, Young-Sik;Kim, Kwang-Tae;Jhang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.187-195
    • /
    • 2010
  • Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical & mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld & HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(${\alpha}$) and austenite(${\gamma}$) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants.

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제5권5호
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

Composite PEO-Coatings as Defence Against Corrosion and Wear: A Review

  • Gnedenkov, S.V.;Sinebryukhov, S.L.;Sergienko, V.I.;Gnedenkov, A.S.
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.212-219
    • /
    • 2019
  • This paper reviews recent approaches to develop composite polymer-containing coatings by plasma electrolytic oxidation (PEO) using various low-molecular fractions of superdispersed polytetrafluoroethylene (SPTFE). The features of the unique approaches to form the composite polymer-containing coating on the surface of MA8 magnesium alloy were summarized. Improvement in the corrosion and tribological behavior of the polymer-containing coating can be attributed to the morphology and insulating properties of the surface layers and solid lubrication effect of the SPTFE particles. Such multifunctional coatings have high corrosion resistance ($R_p=3.0{\times}10^7{\Omega}cm^2$) and low friction coefficient (0.13) under dry wear conditions. The effect of dispersity and ${\xi}$-potential of the nanoscale materials ($ZrO_2$ and $SiO_2$) used as electrolyte components for the plasma electrolytic oxidation on the composition and properties of the coatings was investigated. Improvement in the protective properties of the coatings with the incorporated nanoparticles was explained by the greater thickness of the protective layer, relatively low porosity, and the presence of narrow non-through pores. The impedance modulus measured at low frequency for the zirconia-containing layer (${\mid}Z{\mid}_{f=0.01Hz}=1.8{\times}10^6{\Omega}{\cdot}cm^2$) was more than one order of magnitude higher than that of the PEO-coating formed in the nanoparticles-free electrolyte (${\mid}Z{\mid}_{f=0.01Hz}=5.4{\times}10^4{\Omega}{\cdot}cm^2$).

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

해수 콘크리트에 대한 수중불분리 혼화제와 방청제의 효과에 관한 연구 (The Effect of Antiwashout Admixture and Corrosion Inhibitor on the Seawater Concrete)

  • 강현주;이경희;조인성;한형섭
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.970-976
    • /
    • 2002
  • 본 논문에서는 수중불분리혼화제와 수중불분리혼화제+방청제를 병용(1 type)한 혼화제를 사용하여 콘크리트의 slump flow, 탁도, pH, 방청효과, 블리딩, 압축강도의 특성을 분석하였다. 그 결과 slump flow, 탁도, pH, 압축강도등 콘크리트의 물리적인 특성에서는 차이가 없었으나 부식촉진서험결과 수중불분리혼화제만을 사용한 콘크리트와 방청제를 병용(1 type)하여 사용한 것의 방청율이 큰 차이를 나타내었으며, 수중불분리혼화제만을 사용하였을 경우 5.4, 방청제와 병용하여 사용하였을 경우 0.07%로 방청제를 병용(1 type)하여 사용한 큰크리트의 내부식성이 높게 나타났다.

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

  • Kim, Hyung-Rae;Choi, Won-Chang;Yoon, Sang-Chun;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.43-52
    • /
    • 2016
  • The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with irregular corrosion of their reinforced concrete. The development of cracks in the corroded area was found to be dependent on the level of corrosion, and transverse cracks developed due to tensile loading. Based on this crack development, the average stress versus deformation in the rebar and concrete could be determined experimentally and numerically. The results, determined via finite element analysis, were calibrated using the experimental results. In addition, bond elements for reinforced concrete with corrosion are proposed in this paper along with a relationship between the shear stiffness and corrosion level of rebar.

440A 강의 균일부식에 미치는 합금원소와 열처리의 영향(I) (The Effect of Alloying Elements and Heat Treatment on the Uniform Corrosion of 440A Martensitic Stainless Steel(I))

  • 김영철;강창룡;정병호
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.42-48
    • /
    • 2011
  • 440A martensitic stainless steels which were modified with reduced carbon content(~0.5%) and addition of small amount of nickel, vanadium, tungsten and molybdenum were manufactured. Effects of alloying elements and tempering temperatures on the uniform corrosion in the solution of lN H2S04 were investigated through the electrochemical polarization test. When tempering temperature is constant, corrosion current density in active-passive transition point, Icorr, decreased a little with an increase of austenitizing temperature. In addition to this, when austenitizing temperature is constant, longer holding time showed a little lower Icorr and Ipass, passive current density. And when austenitized at $1050^{\circ}C$ and tempered in a range of $350{\sim}750^{\circ}C$, best anti-corrosion properties were obtained at $350^{\circ}C$ tempering temperature while worst at $450^{\circ}C$ or $550^{\circ}C$. The specimens tempered at below $450^{\circ}C$ and above $550^{\circ}C$, similar and good anti-corrosion characteristics were obtained regardless of alloying elements added, showing anti-corrosion characteristics are influenced more by tempering temperature than by alloying elements.

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.