• 제목/요약/키워드: Corrosion Properties

검색결과 1,760건 처리시간 0.035초

적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근 (Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium)

  • 김기태;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구 (A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding of the Cast Iron

  • Moon, Kyung Man;Kim, Jin Gyeong;Lee, Myung Hoon;Kim, Ki Joon
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.134-137
    • /
    • 2008
  • Cold arc welding of cast iron has been widely used with repair welding of metal structures. However its welding is often resulted in the galvanic corrosion between weld metal zone and heat affected zone(HAZ) due to increasing of hardness. In this study, corrosion properties such as hardness, corrosion potential, surface microstructures, and variation of corrosion current density of welding zone with parameters of used electrodes for cast iron welding were investigated with an electrochemical evaluation. Hardness of HAZ showed the highest value compared to other welding zone regardless of kinds of used electrodes for cast iron welding. And its corrosion potential was also shifted to more negative direction than other welding zone. In addition, corrosion current density of WM in polarization curves was qualitatively smaller than that of HAZ. Therefore galvanic corrosion may be apparently observed at HAZ. However galvanic corrosion may be somewhat controlled by using an optimum welding electrode.

적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교 (Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP))

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

숙신산 알킬 하프-아마이드 유도체의 합성 및 해수에 대한 방청성능 (Synthesis and Anti-corrosion Properties of Succinic Acid Alkyl Half-amide Derivatives)

  • 백승엽;김영운;정근우;유승현;김남균
    • 청정기술
    • /
    • 제17권4호
    • /
    • pp.314-324
    • /
    • 2011
  • 아마이드 유도체는 방청성능 및 윤활성능이 우수하여 금속가공유 및 유압작동유등의 첨가제로 많이 사용되고 있다. 본 연구에서는 광유계 윤활기유의 방청제로 사용하기 위하여 알킬 무수 숙신산과 여러 가지 아민과의 링개환 반응을 행하여 카르복실 그룹과 아마이드 그룹을 동시에 포함하는 숙신산 알킬 하프-아마이드 유도체들을 97% 이상의 수율로 합성하였으며 합성구조에 따라 1 중량% 농도범위에서 광유계 오일에 용해되었다. 합성 유도체의 구조는 $^1H$-NMR 및 FT-IR 스펙트럼으로 행하였으며 GC 크로마토그램을 통하여 화합물의 순도를 확인하였다. 또한, 합성 유도체의 해수에 대한 방청성능을 ASTM D665 표준방법과 무게 중량법으로 평가한 결과, 합성 유도체의 농도가 증가하고 알킬기의 사슬이 짧고 2차 아민으로 합성한 숙신산 알킬 하프-아마이드의 방청성능이 1차 아민으로 합성한 유도체보다 상대적으로 방청성능이 우수하였다. 무게 중량법으로 평가한 방청효율% (IE%)는 알킬기의 사슬이 짧을수록 우수한 방청효율을 나타내었으며 구조에 따라 방청효율에 차이를 나타내었다. 40 ppm 농도를 첨가한 오일의 IE%는 최고 93% 이상이었다. 또한, 발청속도(Corrosion Rate, CR)는 알킬기의 사슬이 짧을수록 낮은 값을 나타내어 합성 유도체 40 ppm 농도를 첨가한 오일의 CR 값은 최고 0.5 mm/year 이하로 나타났다.

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

Corrosion of Reinforcement and Its Effect on Structural Performance in Marine Concrete Structures

  • Yokota, Hiroshi;Kato, Ema;Iwanami, Mitsuyasu
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.297-303
    • /
    • 2007
  • This paper discusses the chloride-induced corrosion of reinforcement in marine concrete structures focusing on the variability in the progress of deterioration. Through tests and analyses of reinforced concrete slabs taken out from existing open-pile structures that have been in service for 30 to 40 years, the following topics were particularly discussed: variation in chloride ion profiles of concrete, variation in corrosion properties of reinforcement embedded in concrete, and influence of the reinforcement corrosion on the load-carrying capacity of the concrete slabs. As a result, their variability was found to be very large even in one reinforced concrete slab with almost the same conditions. It was also discussed how to determine the calculation parameters for prediction of decreasing in load-carrying capacity of concrete members with chloride-induced corrosion of reinforcement.

수용액내에서의 방청제 부식성능 평가연구 (A Study on the anti-Corrosion Properties of Inhibitor in Aqueous Solution)

  • 류화성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.221-223
    • /
    • 2011
  • In this study, in order to comprehend performance of corrosion inhibitor, the experiment study was conducted about corrosion characteristic of 3 steps(0.0, norm 1/2, norm) compared to organic corrosion inhibitor standard use of liquid and molar 3 steps(0.0, 0.3, 0.6%) of Chloride by added amount of inorganic corrosion inhibitor by the corrosion inhibitor types about 2.4kg/㎥, 4.8kg/㎥ based on Chloride ion content 1.2kg/㎥ for service life prediction of concrete structure by using Poteniostat.

  • PDF