• 제목/요약/키워드: Corrosion Properties

Search Result 1,752, Processing Time 0.029 seconds

Study on the Surface Properties of Arc Ion Plated Ti-Al-Cr-N Thin Layers (아크 이온 증착된 Ti-Al-Cr-N 도포층의 표면 물성 연구)

  • Gang, Bo-Gyeong;Choe, Yong;Gwon, Sik-Cheol;Zang, Shi-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.125-125
    • /
    • 2015
  • Ti-Al-Cr-N thin layer was prepared on Fe-Si thin sheet by arc ion plating to improve corrosion and mechanical properties. The compositions ratios of Fe : Cr : Al : Ti : Si : N of the thin layers at $500^{\circ}C$ was 1.24 : 0.56 : 36.82 : 32.72 : 0.59 : 28.07 [wt.%], respectively. The higher arc ion plating temperature was, the higher corrosion resistance and nano-hardness were observed due to chromium content. Corrosion potential and corrosion rate in artificial sea water of the coating layer were in the range of $-39mV_{SHE}$ and $2mA/cm^2$, respectively. Passivity was not observed in the artificial sea water. Nano-hardnesses of the thin layers was increased by adding Cr from 23.6 to 25.8 [GPa]. The friction coefficients and fatigue limits of the layers were 0.388, 0.031, respectively.

  • PDF

Corrosion Properties of Ziycaloy-4 Cladding Tube having a Laser Welding Part in Elevated Temperature (Zircaloy-4 핵연료봉 레이저 용접부의 고온부식 특성 연구)

  • 박진석;김동균;김상태;양명승;이정원;김수성
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.65-68
    • /
    • 2001
  • Corrosion and tensile properties of zircaloy-4 cladding tube having a laser welding part in elevated temperature are studied to present the criterion of quality evaluation in nuclear reactor and to found the scientific basis of SCC, with laser welding method using by coupling up cladding tube to end cap. In the result of tensile test(40$0^{\circ}C$), the fracture is not happened in the welding part but base metal and the result of corrosion test(40$0^{\circ}C$ 1500psi steam), corrosion rate of the molten zone and PMZ is a little higher than the other zone

  • PDF

The effects of overlapping ratio on surface properties in laser cladding (레이저 클래딩 중첩도가 표면특성에 미치는 영향)

  • 이제훈;서무홍;한유희
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • A 4㎾ RS840 CO2 laser with a powder auto-feeding apparatus has been used to deposit multiple overlapping tracks of Ni-base superalloy on to low carbon steel. It was found that the surface roughness(turbulence) of an overlapped cladding layer decreased with the increase of the overlapping ratio in an oscillating manner. When the overlapping ratio had values of 0.62, the surface turbulence was lowest. Overlapping ratio offer significant potential for improvement of materials surface properties such as corrosion performance and wear resistance. This paper reports that the overlapping ratio shows best corrosion resistance. The tensile residual stresses generated at the higher overlapping ratio( > 0.45) and the element concentration of Fe increased in the surface layer at the lower overlapping ratio( < 0.45) may lead to worse corrosion resistance.

  • PDF

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

Nanoparticles Modified With Cationic Thiol Surfactant as Efficient Inhibitors for the Corrosion of Carbon Steel

  • Azzam, Eid M.S.;Sami, Radwa M.;Alenezi, Khalaf M.;El Moll, Hani;Haque, A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.308-316
    • /
    • 2021
  • In this work, we report synthesis, characterization and corrosion inhibition properties of cationic thiol surfactant-capped silver (SC-Ag-NPs) and gold (SC-Au-NPs) nanoparticles. SC-Ag-NPs and SC-Au-NPs were characterized using regular techniques include TEM. Corrosion study was carried out using carbon steel (CS) in 3.5% NaCl aqueous solution and characterized using multiple electrochemical techniques. Our results suggest that the paint containing SC-Ag-NPs and SC-Au-NPs endow efficient corrosion protection to the CS. Especially, SC-Au-NPs based paint form a stronger barrier between the metal and the corrosive ions, leading to better inhibition properties.

Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization (알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰)

  • Seungmin, Lee;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Analysis of the Effects of Ti, Si, and Mo on the Resistance to Corrosion and Oxidation of Fe-18Cr Stainless Steels by Response Surface Methodology (반응표면분석법을 활용한 Fe-18Cr 스테인리스강의 부식 및 산화 저항성에 미치는 Ti, Si, Mo의 영향 분석)

  • Jang, HeeJin;Yun, Kwi-Sub;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.741-748
    • /
    • 2010
  • We studied the corrosion and oxidation properties of Fe-18Cr-0.4Nb-(0.1~0.6)Ti-(1~3)Si-(0.5~2)Mo stainless steel. The resistance to general and pitting corrosion was evaluated and the results were analyzed by Response Surface Methodology (RSM) as a function of alloy composition. The effects of alloy composition and heat treatment on the oxidation resistance were also examined. Mo increased both general corrosion resistance and pitting corrosion resistance. Si improved the resistance of the alloys to pitting corrosion. Si was also beneficial for general corrosion resistance of the alloys containing Mo at more than 1 wt.%. However, Mo was detrimental when its content was lower. Effects of Ti on general corrosion properties appeared to be weak and a high concentration of Ti appeared to deteriorate pitting resistance. The thickness of the oxidation scale increased and adhesion of the scale worsened as the temperature increased from $800^{\circ}C$ to $900^{\circ}C$. Weight gain of the alloys due to oxidation at $900^{\circ}C$ clearly showed that the resistance to oxidation is improved by annealing at $860^{\circ}C$ and an increase of Si content.

A Study on the Development of Steel Corrosion Prediction System (철근 부식 예측 시스템의 개발에 관한 연구)

  • 김도겸;박승범;이택우;이종석;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.743-746
    • /
    • 1999
  • One of the main deteriorating factors that affect the service life of concrete structures is the corrosion of reinforcement. The chlorides penetrate the concrete, destroy the passive layer surrounding the steel, and help initiate the steel corrosion. A Corrosion Prediction System(CPS) has been developed to assist the engineer in analyzing the service life of existing sea-shore structures and future concrete repairs by calculate the chloride diffusion in concrete. The CPS calculates mixing design, physical properties or recent chloride profiles. The CPS can be used to evaluate changes in concrete cover, chloride loads, and environmental conditions in different structural designs.

  • PDF