• Title/Summary/Keyword: Corrosion Life

Search Result 605, Processing Time 0.045 seconds

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Fatigue Strength of Dental Implant in Simulated Body Environments and Suggestion for Enhancing Fatigue Life (생체유사환경 하의 치과용 임플란트의 피로강도 평가 및 수명 향상법)

  • Kim, Min Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2014
  • Fatigue tests were performed in various simulated body environments reflecting various factors (such as body fluids, artificial saliva) relevant within a living body. First, the fatigue limit under a simulated body environment (artificial saliva) was evaluated and the governing factors of implant fatigue strength were looked into by observing the fracture mode. The fatigue life of an implant decreased in the artificial saliva environment compared with that in the ringer environment. Furthermore, in the artificial saliva environment, the implant fracture mode was fatigue failure of fixture as opposed to the abutment screw mode in the ringer environment. In the fatigue test, corrosion products were observed on the implant in the simulated body environment. A larger amount of corrosion products were generated on the artificial saliva specimen than on the ringer specimen. It is thought that the stronger corrosion activity on the artificial saliva specimen as compared with that on the ringer specimen led to an overall decrease of fatigue life of the former specimen. In the case of the implant with a nitrided abutment screw eliminated hardened layer (TixN), a several times increase in fatigue life is achieved in comparison with tungsten carbide-coated implants.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF

Evaluation and Prediction of Corrosion Resistance of Epoxy Systems and Epoxy/Polyurethane Systems in Seawater Environment

  • Lee, Chul-Hwan;Shin, Chil-Seok;Baek, Kwang-Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • Current coating practice requires the thickness of anti-corrosion organic coatings to be over $250{\mu}m$ for immersion parts of ships and offshore structures and the corrosion resistance of these coatings has been evaluated by destructive and qualitative analysis. Recently, Electrochemical Impedance Spectroscopy(EIS) method has been employed, as an alternative, to evaluate corrosion resistance of organic coatings. This method is characterized as being nondestructive, reproducible, and quantitative in evaluating aging of organic coatings. In this study, EIS method was adopted to quantitatively and effectively select the coating systems having optimized protective performance. Evaluations of several epoxy and epoxy/polyurethane coating systems typically used for ships and offshore structures were carried out in wet($50^{\circ}C$, $90^{\circ}C$) and dry(room temp.) environments to accelerate the degradation of the organic coatings. These results were compared with the conventional scribed(scratched) test results. The plausible prediction model for determining the remaining life-time of coating systems was also proposed based on variations of impedance data, FT-IR and $T_g$ measurements results.

Effects of Cetyltrimethylammonium bromide on the Corrosion Inhibition of a Lead-free α-Brass by Sodium Gluconate in Sulfuric Acid

  • Jennane, Jamila;Touhami, Mohamed Ebn;Zehra, Saman;Chung, Ill-Min;Lgaz, Hassane
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • The inhibition performance of sodium gluconate (SG), cetyltrimethylammonium bromide (CTAB) and their mixture (SG/CTAB) on the corrosion behavior of ${\alpha}$-brass in 0.5 M $H_2SO_4$ solution has been investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS), Inductively Coupled Plasma Spectrometry (ICPS) and molecular dynamics (MD) simulation techniques. The results reveal that SG with 5ppm CTAB, noted SG/CTAB, acts as a good corrosion inhibitor and its inhibition efficiency reached 89% after 24 h immersion in sulfuric acid solution, but slightly decreased at higher temperatures. The polarization curves displayed that SG/CTAB acts as a cathodic-kind inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that the addition of 5ppm CTAB to different concentrations of SG considerably increases the corrosion resistance of ${\alpha}$-brass. The SEM-EDS and ICPS analyses support the experimental results. Further, molecular dynamics (MD) simulations were used to understand the adsorption profiles of SG/CTAB on Cu(111) and Zn(111) surfaces.

Predicting on Service Life of Concrete by Steel Corrosion (철근부식에 의한 육지 콘크리트의 수명예측)

  • 정우용;손영무;윤영수;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.682-687
    • /
    • 2000
  • In this research the remaining service life of the concrete due to the steel corrosion was predicted by three cases; causing carbonation, using sea sand, using deicing salts. In case of deterioration by carbonation, effective carbonation depth, effective coverage depth and relative humidity are considered for predicting method. In case of using sea sand, predicting method is made of rust growth equation from polarization resistance method. In case of using deicing salts, predicting method is made of transformation of Fick's law. Three methods are very useful in predicting service life of concrete.

  • PDF