• Title/Summary/Keyword: Corrosion Level

Search Result 349, Processing Time 0.028 seconds

Effect of degree of corrosion on the mechanical properties of rebar (철근부식정도가 철근의 역학적 특성에 미치는 영향)

  • Cheong, Hai-Moon;Lee, Chan-Young;Ahn, Tas-Song;Tae, Sung-Ho;Lee, Han-Seung;Kang, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.257-260
    • /
    • 2006
  • This paper reports results of a study conducted to assess the effect of degree of corrosion of reinforcing steel bar on their mechanical properties. Reinforcing steel bars, 13mm in diameter, that were corroded by electrically accelerated corrosion method in concrete specimens were removed and tested in tension. Results indicated that the level of reinforcement corrosion influenced yield point, the tensile strength and elongation of steel bars.

  • PDF

Effect on the Corrosion of Steel by Unburnt Carbon in Fly Ash Cement Mortar (미연탄소분이 플라이 애시 시멘트 모르타르 내 철근의 부식에 미치는 영향)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Lee, Hyun-Goo;Ha, Yoon-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.338-342
    • /
    • 2007
  • The increase of activated carbon contents in fly ashes accelerate the corrosion of steel embedded in ordinary portland cement(OPC) mortar. Cement losses its identity of colour when the % of carbon is increased. More than 60[%] area was rusted when carbon content is increased beyond 8[%] for the exposure period of one year. Comparable corrosion rate with OPC was obtained up to 6[%] carbon level only. The tolerable limit of replacement for various admixed carbon system under aggressive alternate wetting and drying condition with 3[%] NaCl was found to be 6 to 8[%].

Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land (간척지대에 매설된 대구경 금속관의 외면 부식손상 평가)

  • Lee, Ho-Min;Choi, Tae-Ho;Kim, Jung-Hyun;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.

Correlation of Surface Chloride and Corrosion Amount for Steel Member Exposed in Marine Environment (해양환경에 노출된 강부재의 표면염분과 부식량 상관관계)

  • Min-Gyun Ha;Chang-Jae Heo;Hoon Yoo;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.45-53
    • /
    • 2023
  • In this study, to analyze the correlation of surface chloride and corrosion amount level according to the installation location of steel members exposed to the marine environment, the surface chloride and mean corrosion depth were evaluated by member units for box girder members of the offshore steel bridge and box specimens. The surface chloride was measured monthly using the Bresle method for one year. The corrosion amount was evaluated by converting the weight loss due to corrosion products generated in the monitoring steel plate into mean corrosion depth. As a measurement result of the surface chloride and corrosion amount, relative differences in surface chloride and mean corrosion depth were appeared depending on the shape or installation location of the steel members. Moreover, even if members of the same shape were installed in the same bridge, it was confirmed that the corrosion amount was increased locally and rapidly. The tendency of corrosion amount depending on the surface chloride was evaluated to analyze the correlation between surface chloride and corrosion amount, and the relation equations that can asseses the corrosion amount depending on the surface chloride were analyzed. From the results of the correlation between surface chloride and corrosion amount, it was found that the corrosion amount of the steel member affected by the surface chloride was varied up to about 1.15 times depending on the structural detail.

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.

A Fundamental Study for Development of Corrosion Inhibitor Repair Mortar (저탄소 방청 보수모르타르 개발을 위한 기초연구)

  • Jung, Jae-Eun;Yang, Keun-Hyeok;Go, Jeung-Wan;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2014
  • The present study prepared 13 mixes to examine fundamental mixture proportions of corrosion inhibitor repair mortars. The mortar mixes were classified into three groups according to the selected test variables which are the substitution level of polymer for Group 1, ground granulated blast-furnace slag (GGBS) and fly ash (FA) for Group 2, and corrosion inhibitor for Group 3. Based on the test results, the optimum substitution levels of GGBS and FA could be recommended as 10% and 20%, respectively, though 1-day strength of mortar significantly decreased with their substitution. Furthermore, the appropriate substitution level of corrosion inhibitor was considered to be less than 1.5%. The flexural strength of mortar tested was higher than the predictions obtained from ACI 318-11 equation. The shrinkage strain of mortar was also conservative after an age of around 10 days compared with the predictions of ACI 209.

The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel. (AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향)

  • Jeong, Kwang-ho;Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

Effect of Microstructure on Hydrogen Induced Cracking Resistance of High Strength Low Alloy Steels

  • Koh, Seong Ung;Jung, Hwan Gyo;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.164-169
    • /
    • 2007
  • Hydrogen induced cracking (HIC) was studied phenomenologically and the effect of microstructure on HIC was discussed for the steels having two different levels of nonmetallic inclusions. Steels having different microstructures were produced by thermomechanically controlled processes (TMCP) from two different heats which had the different level of nonmetallic inclusions. Ferrite/pearlite (F/P), ferrite/acicular ferrite (F/AF), ferrite/bainite (F/B) were three representative microstructures for all tested steels. For the steels with higher level of inclusions, permissible inclusion level for HIC not to develop was different according to steelmicrostructure. On the contrary, HIC occurred also at the martensite/austenite (M/A) constituents regardless of steel microstructure when they accumulated to a certain degree. It was proved that M/A constituents were easily embrittled by hydrogen atoms. Steels having F/AF is resistant to HIC at a given actual service condition since they covers a wide range of diffusible hydrogen content without developing HIC.

A Study on the Development of ppb Level Dissolved Oxygen Measuring Technology using Clark Cell (Clark Cell을 이용한 ppb Level 용존산소 측정기술 개발에 관한 연구)

  • 정경열;이후락;동은석;이수태;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.197-201
    • /
    • 2001
  • Measuring of the dissolved oxygen is widely used for the environmental control of natural waters, sewage waste treatment, medical and biochemical studies, soil husbandry, food and drug process control, and prevention of corrosion in boilers. Especially, a power plants need special management for preventing accidents from corrosion, therefore, it is essential to measure the concentration of dissolved oxygen in real-time. In this paper we present a method of measuring dissolved oxygen very accurately up to ppb units. This method, called polarographic method, is based on the measures of the electric current generated by the oxidation process in cathode and de-oxidation process in anode, assuming that the amount of the current is proportional to the density of dissolved oxygen.

  • PDF