• Title/Summary/Keyword: Corrosion Integrity Evaluation

Search Result 74, Processing Time 0.024 seconds

Development of an Integrity Evaluation Program for Corroded City Gas Pipelines

  • Shim, D.J.;Yun, K.O.;Choi, J.B.;Kim, Y.J.;Kim, W.S.;Choi, S.C.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.164-170
    • /
    • 2005
  • Pipelines have the highest capacity and are the safest and the least environmentally disruptive means for transmitting gas or oil. Recently, failures due to corrosion defects have become a major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. In this paper, a Fitness-For-Purpose(FFP) type limit load solution for corroded city gas pipelines is proposed. For this purpose, a series of burst tests with various types of machined defects were performed. Finite element simulations were carried out to derive an appropriate failure criterion. Based on such solution along with existing solutions, an integrity evaluation program for corroded city gas pipeline, COPAP-CITY, has been developed.

Development of Fitness for Service Evaluation Programs (기간설비 사용적합성 평가 프로그램 개발)

  • Park, Young-Jae;Yun, Kang-Ok;Chang, Yoon-Suk;Kim, Young-Jin;Cho, Kyung-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • An effective integrity evaluation system is essential to manage the fitness for service issues on infra-structure because the evaluation processes usually take long times and are detrimental for productivity point of view. In this paper, the key structures and procedures of four integrity evaluation programs which have been developed based on currently available codes and standards are described. The proposed programs are not only flexible to adopt advances in fitness for purpose type assessment methodologies but also convenient for field engineers. The developed programs which will be unified as an integrity evaluation system are expected to play a prominent role for integrity evaluation of major infra-structure.

  • PDF

A Study on the Evaluation Technology of Welds Integrity in Nuclear Power Plants

  • Chang, Hyun-Young;Kim, Jong-Sung;Jin, Tae-Eun
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-32
    • /
    • 2007
  • The final goal of this study is to develop the core technologies applicable to the design, operation and maintenance of welds in nuclear structures. This study includes predicting microstructure changes and residual stress for welded parts of nuclear power plant components. Furthermore, researches are performed on evaluating fatigue, corrosion, and hydrogen induced cracking and finally constructs systematically integrated evaluation system for structural integrity of nuclear welded structures. In this study, metallurgical and mechanical approaches have been effectively coordinated considering real welding phenomena in the fields of welds properties such as microstructure, composition and residual stress, and in the fields of damage evaluations such as fatigue, corrosion, fatigue crack propagation, and stress corrosion cracking. Evaluation techniques tried in this study can be much economical and effective in that it uses theoretical/semi-empirical but includes many additional parameters that can be introduced in real phenomena such as phase transformation, strength mismatch and residual stress. It is clear that residual stress makes great contribution to fatigue and stress corrosion cracking. Therefore the mitigation techniques have been approached by reducing the residual stress of selected parts resulting in successful conclusions.

The Evaluation of Remaining Strength for Corroded Pipeline by Full Scale Burst Test (실제크기 배관의 파열시험을 통한 가스배관의 파괴거동 평가)

  • Kim, Young-Pyo;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.339-344
    • /
    • 2001
  • The transmission pipeline industry spends many millions of dollars annually performing inline inspections, excavating sites of possible corrosion, and repairing or replacing damaged sections of pipe. New criteria for evaluation the integrity of corroded pipe have been developed in recent years to help in controlling these costs. These new criteria vary widely in their estimates of integrity and the most appropriate criterion for a given pipeline is not always clear. This paper presents an overview, comparison and evaluation of acceptability criteria for corrosion defects in pipelines. By full scale burst tests, this paper have assessed the relative accuracy of each of theses criteria in predicting failure and remaining strength. Many of the criteria appear to be excessively conservative and indicate that defects must be repaired when none is needed, based upon burst test data.

  • PDF

Study on Evaluation of Structural Integrity for Small Aircraft Tail (소형 항공기 미익부 구조 건전성 평가에 관한 연구)

  • Lee, Muhyoung;Park, Illkyung;Kim, Sungjoon;Ahn, Sukmin
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Structural integrity evaluation is important item in the aircraft certification. Recently, it is designed for limit load, material weakness about fatigue and corrosion, damage by bird strike in flight to evaluate structural integrity of aircraft. And static/fatigue analysis are performed to secure structural integrity, it was verified by static and fatigue tests. To evaluate the structural integrity of small aircraft tail, structural integrity was calculated by the finite element analysis. In the present study, finite element analysis are performed to pick out load cases in flight occurrence, and secure margin of safety to evaluate structural integrity of KC-100 tail unit. The proprieties of finite element analysis results are compared with the static structure test results. The estimation process of structural integrity for small aircraft tail may help the design.

Structural Integrity and Safety Margin Evaluation for Thinned Pipe Component (감육배관의 구조건전성 및 안전여유도 평가 기술)

  • Lee, Sung-Ho;Kim, Tae-Ryong;Kim, Bum-Nyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.264-267
    • /
    • 2004
  • Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle piping systems in Nuclear Power Plants (NPP). Since the mid-1990s, secondary side piping systems in Korean NPPs have experienced wall thinning, leakages and ruptures caused by FAC. Korea Electric power Research Institute (KEPRI) and Korea Hydro & Nuclear Power Co., LTD. (KHNP) have conducted a study to develop the methodology for systematic pipe management and established the Korean Thinned Pipe Management Program (TPMP). To effectively maintain the integrity of piping system, FAC engineer should understand the criterions of the structural integrity evaluation and the safety margin assessment for the thinned pipe component. This paper describes the technical items of TPMP, and shows the example of the integrity evaluation and safety margin assessment for three thinned pipe component of a NPP.

  • PDF

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

Evaluation of Piping Integrity in Thinned Main Feedwater Pipes

  • Park, Young-Hwan;Kang, Suk-Chull
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • Significant wall thinning due to flow accelerated corrosion(FAC)was recently reported in main feedwater pipes in 3 Korean pressurized water reactor(PWR) plants. The main feedwater pipes in one plant were repaired using overlay weld method at the outside of pipe, while those in 2 other plants were replaced with new pipes. In this study, the effect of the wall thinning in the main feedwater pipes on piping integrity was evaluated using finite element method. Especially, the effects of both the overlay weld repair and the stress concentration in notch-type thinned area on the piping integrity were investigated. The results are as follows : (1) The piping load carrying capacity may significantly decrease due to FAC. In special, the load carrying capacity of the main feedwater pipe was reduced by about 40% during about 140 months operation in Korean PWR plants. (2) By performing overlay weld repair at the outside of pipe, the piping load carrying capacity can increase and the stress concentration level in the thinned area can be reduced.

  • PDF

Analysis of Weld Beads for Wall Thinning Defects in the Weld Zone of the Boost Pump Recirculation Pipe for Power Plants and Evaluation of Their Integrity (플랜트 승압펌프 재순환 배관 용접부의 용접비드에 의해 발생한 감육결함 분석 및 건전성 평가)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.38-46
    • /
    • 2010
  • The wall thinning phenomenon of pipes was simulated as metal loss due to erosion and corrosion. Such wall thinning defects in the pipes of power plants are a very important safety consideration. In this study, we analyzed wall thinning defects that occurred by weld bead of weld zone of boost pump recirculation pipe. From the results of the analysis of pipe failures, numerical analysis was performed by Fluent v6.3.26 using the standard k-$\varepsilon$ model of the weld bead shape, such as an elliptical or a spherical shape, on the inner wall of the pipe. Using the results obtained, we showed the overlap effect by cavitations corrosion and erosion-corrosion at the bottom of the wall-thinning defect.

Evaluation of the Corrosion Behavior of the Aluminum Cladding in the KMRR Fuel (KMRR 핵연료 알루미늄 피복재의 부식 거동 평가)

  • Lee, Chan-Bock;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.526-535
    • /
    • 1994
  • For the evaluation of the corrosion behavior of the aluminum cladding in the KMRR(Korea Multipurpose Research Reactor) fuel, a modified Griess correlation was derived by introducing a heat flux factor derived from the comparison of the measured in-reactor corrosion data with the prediction of the Griess correlation. As a design criterion on the corrosion to maintain the KMRR fuel integrity, prevention of the oxide spallation was conservatively selected, which is conservatively assumed to occur when the temperature difference across the oxide layer exceeds 114$^{\circ}C$. A bounding power history of the KMRR fuel was determined by examining all the power histories of the KMRR fuel from cycle 1 to equilibrium cycle, and used to predict the maximum possible corrosion. Results of the corrosion prediction of the KMRR fuel with the bounding power history showed that the maximum local thickness of the oxide layer would be below 50$\mu$m and the design criterion on the oxide spallation would be satisfied with a factor of two margin. Therefore, it can be said that corrosion of the cladding will not impair the integrity of the KMRR fuel. Nevertheless, the applicability of the modified Griess correlation to the KMRR needs to be further verified through the KMRR fuel corrosion surveillance.

  • PDF