• Title/Summary/Keyword: Corrosion Fatigue Strength

Search Result 202, Processing Time 0.025 seconds

Performance evaluation of the forming methods used in the production of bellows for LNG carriers I - Comparison of design methods and mechanical properties of bellows - (LNG 선박용 벨로우즈의 제작시 성형방법에 따른 성능 평가 I - 벨로우즈의 제작방법 및 기계적 특성 비교 -)

  • Kim, Pyung-Su;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.587-592
    • /
    • 2016
  • Bellows for LNG carriers must be corrosion resistant in order to operate in seawater environments. They must also have long fatigue lives in order to withstand the expansion and contraction caused by large temperature changes and continuous vibration in extreme environments. In order to incorporate these properties into bellow design, it is important to use materials that are resistant to cold brittleness and corrosion, and maintain their optimized forming condition. The design conditions and forming methods used for bellows must be optimized in order to incorporate these characteristics. In this study, finite element analysis was used to develop cryogenic bellows, which have good mechanical strength and reliability. In addition, two different forming methods (mechanical and hydroforming) were used to design and produce bellows, in order to derive their forming condition. The height, thickness, and hardness of the convolutions of bellows produced by each method were measured and compared with each other. The results confirmed that the two forming methods produced bellows with different mechanical properties.

Forging Process Design to Improve the Properties of Al Alloy Forged Part for Aerospace (항공기용 Al 합금 단조품의 특성 향상을 위한 단조 공정 설계)

  • Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.228-232
    • /
    • 2001
  • Fatigue strength, electrical conductivity and stress-corrosion-cracking resistance are considered as important factors at aircraft Al alloys, therefore Al7050 alloy has been developed to improve such properties. However, hammer-forged Al7050 parts showed the undesirable structures such as severe local grain coarsening and inhomogeneous material flow, resulted in the degraded mechanical properties. In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the cases of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

  • PDF

Flexural Characteristics of High Performance Fiber Reinforced Cement Composites used in Hybrid Synthetic Fibers (하이브리드 합성섬유를 이용한 고인성 섬유보강 복합체의 휨특성)

  • Han Byung Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • The synthetic fibers such as polypropylene(PP) and polyvilyl-alcohol(PVA) fiber are poised as a low cost alternative for reinforcement in structural applications. It has been reported that synthetic fiber in cement composites can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. High performance fiber reinforced cementitious composite(HPFRCCs) shows ultra high ductile behavior in the hardened state, because of the fiber bridging properties. Therefore, a variety of experiments have being performed to access the performance of HPFRCCs recently. The research emphasis is on the flexural behavior of HPFRCCs made in synthetic fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Three-point bending tests on HPFECCs are carried out. As the result of the bending tests, HPFRCCs showed high flexural strength and ductility. HPFRCCs made in PVA or Hybrid fiber were, also, superior to PP of singleness. On the other hand, effect of sand volume fraction on HPFRCCs made in PP was insignificant.

  • PDF

A Study on Surface Roughness of Aluminum 7075 to Nose Radius and Cooling Method in CNC Lathe Machining (CNC선반가공에서 노오즈 반경과 냉각방법에 따른 알루미늄7075의 표면 거칠기에 관한 연구)

  • Noh, Young-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.85-91
    • /
    • 2015
  • Current world aircraft industry studies on the precision of the product are in active progress. Particularly in terms of improving the quality of processed products in terms of the surface roughness of the dimensional accuracy, fatigue strength, and corrosion resistance, which affect a lot of research on surface roughness, has been investigated. In this study of aluminum alloy, 7075 aircraft aluminum is used in a cutting CNC lathe machine for the cutting speed and feed rate according to the cutting experiments that were conducted. Additionally, the machine tool of the cooling method soluble cutting oil, insoluble cutting oil by cooling, and cooling the workpiece by cutting surface roughness will be investigated. Through the method and soluble cutting oil coolant cooled by the cutting speed increases, the value of surface roughness showed a regular result. Tool nose radius of 0.8 mm than 0.4 mm picture of when approximately 50 of the surface roughness values were less.

Carbon Fibers (II): Recent Technical Trends and Market Prospects of Carbon Fibers

  • Seo, Min-Kang;Min, Byung-Gak;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.324-339
    • /
    • 2008
  • The principal aims of the review paper are (1) to establish broad overview information, both qualitative and quantitative, relating to the world market for polyacrylonitrile (PAN) or pitch-based carbon fibers; and (2) to generate an effective analysis and break down of consumption by process route and eventual end-use. The review paper also designed specifically to provide subscribers with an accurate, independent, and realistic assessment of the current status and future perspective of the market for carbon fibers in the world. The world market for carbon fibers continues to grow rapidly, fuelled by new industrial end uses, such as sport and leisure goods, aerospace, automotive applications, civil engineering and infrastructure repair, and immerging applications in energy generation. Demands for properties of carbon fibers used in those applications include many things such as strength, toughness, fatigue property, corrosion resistance, heat resistance, etc., and these become to be higher level. On the other hand, demands for manufacturing technologies of carbon fibers become to be difficult with these demands for properties, and these are wide variety such as high efficiencies, high qualities, many functions, labor saving, and low cost. In this review paper, thus, the recent carbon fibers corresponded to these needs, and its latest manufacturing technologies as well as market prospects are described.

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Material & Structural Characteristics of Composite Material Flexible Propeller (복합재료 유연 프로펠러의 재료 및 구조적 특성 연구)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Byun, Joon-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.203-217
    • /
    • 2009
  • The researches on the development of composite material propeller with outstanding damping effects have been actively attempted for the reduction of radiation noise of underwater vehicle propeller. Composite material suitable for the flexible propeller has the following advantages, such as high specific strength and specific stiffness, low thermal expansion coefficient, high resistance against environmental deterioration, low possibility of corrosion due to cavitation, nonoccurrence of rapid fracture due to fatigue, easy molding of complicated shape, easy repair maintenance and low production costs, etc. For the confirmation of optimal fiber array structures of composite material for the production of the flexible propeller blades, in this study, mechanical characteristics of its specimens according to materials were obtained and structural characteristics of propeller blade were also examined according to materials and stacking fiber arrays.

Optimization of the Turning Conditions of Inconel 718 according to Insert Materials using DOE (실험계획법을 이용한 인서트 종류에 따른 Inconel 718 선삭가공조건 최적화)

  • Shin, Pil-Seon;Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2022
  • Inconel 718 is nickel-based and is increasingly being used as a key component in the nuclear, aerospace, and chemical industries which require high fatigue strength and oxidation, because of its excellent corrosion resistance, heat resistance, and wear resistance. It is a heat-resistant alloy which has excellent mechanical properties; however, material deformation, cracking, and shaking occur because of the high cutting temperature accumulated on the cutting surface during cutting processing, and heat accumulated at the insert boundary. Owing to these characteristics, various studies have been conducted, such as developing a tool exclusively for non-deletion, analyzing tool wear, and developing a tool cooling system. However, the optimization of the cutting process is still insufficient. In this study, the optimal process conditions were derived experimentally by cutting conditions according to the insert type during the cutting of Inconel 718.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Restrained Shrinkage Properties of Polypropylene Fiber Reinforced Rapid-Setting Cement Concrete (합성섬유보강 초속경 콘크리트의 구속건조수축 특성)

  • 원치문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • The rapid-set cement concrete causes high hydration temperature and nay result in a high drying shrinkage and shrinkage-induced cracking. This problem may be fixed by incorporating polypropylene fibers in rapid-set cement concrete, because of increased toughness, resistance to impact, corrosion, fatigue, and durability. A series of concrete drving shrinkage tests was peformed in order to investigate the shrinkage properties of polypropylene fiber reinforced concrete with experimental variables such as concrete types, fiber reinforcement, W/C ratio, with and without restraint. Uni-axially restrained bar specimens were used for the restrained shrinkage tests. The results were as follows; The dry shrinkage of rapid-set cement concrete was much lessor than that oi OPC, probably because of smaller weight reduction rate by early hydration and strength development. The constraint and bridging effects caused by polypropylene fibers were great for the rapid-setting cement concrete when compared with that of plain concrete, and this resulted In increased resistance against tensile stress and cracking.