• Title/Summary/Keyword: Corrosion Experiment

Search Result 448, Processing Time 0.03 seconds

ANALYSIS ON MICROBIOLOGICALLY INFLUENCED CORROSION FAILURE CASE OF SUS316L STAINLESS STEEL WELDS

  • Miyano, Yasuyuki;Yamamoto, Michiyoshi;Watanabe, Kazuya;Kikuchi, Yasushi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • Microbiologically Influenced Corrosion (MIC) was suspected in a corrosion failure of cooling system of stainless piping welded joint, carrying marine water. Marine water which is used for cooling water in a plant was transferred to the laboratory and used for experiment. In the first experiment, weld metal samples were exposed to the test solution for 56 days (marine water and sterilized marine water (control)). Surface condition of experimental coupons was observed using a Scanning Electron Microscope (SEM). In another experiment, free corrosion potential of these material was monitored for 56 days. Pitting corrosion was found in the coupons exposed to marine water. Free corrosion potential ennoblement was found to be significant compared to control. It was suspected that this corrosion case was MIC. In the second experiment, coupons were exposed to diluted nutrient medium containing single culture of microbes isolated from the MIC causing marine water sample used for the first experiment. After exposure test, surface condition of experimental coupon was observed using SEM. Pitting corrosion was found in coupons exposed to some of the isolates. The results indicate that they contribute to the corrosive effect of the SUS316L welds.

  • PDF

Evaluation of Electrochemical Corrosion Characteristics for Hot-Dip Aluminized 304 Stainless Steel in Seawater (알루미늄 용융 도금된 304 스테인리스강의 해수 내 전기화학적 부식 특성 평가)

  • Chong, Sang-Ok;Park, Il-Cho;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.354-359
    • /
    • 2015
  • Stainless steel has poor corrosion resistance in marine environment due to the breakdown of a passive film caused by chloride. It suffers electrochemical corrosion like pitting corrosion, crevice corrosion, and stress corrosion crack (SCC) in marine environment. In general, it indicates that the passive film of $Al_2O_3$ has better corrosion resistance than that of $Cr_2O_3$ in seawater. This paper investigated the damage behavior 304 stainless steel and hot-dip aluminized 304 stainless steel in seawater solution. Various electrochemical experiments were carried out including potential measurement, potentiodynaimic experiment, Tafel analysis and galvanostatic experiment. As a result of anodic polarization experiment, higher pitting damage depth was indicated at 304 stainless steel than hot-dip aluminized 304 stainless steel. In addition, relatively higher corrosion current density was shown at hot-dip aluminized stainless steel as a result of Tafel analysis.

Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater (Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.318-325
    • /
    • 2020
  • Generally, Al alloys of 5000 and 6000 series show excellent weldability, workability, and specific strength, and are widely used in ship building. A combined experiment via cavitation erosion and corrosion damage involving 6061-T6 Al alloy was performed using potentiodynamic polarization under cavitation erosion (hybrid experiments) with amplitude (cavitation strength). The corrosion current density was approximately 52-fold higher at 30 μm than under static conditions, suggesting that the amplitude greatly affected the damage. The degree of damage increased with increasing cavitation amplitude. After the hybrid experiment, the corrosion rate was compared according to the weight loss and damage depth, and the relationship between the two values was expressed as alpha value. The alpha (α) values at amplitudes of 5 μm, 10 μm and 30 μm were 5.11, 12.81 and 8.74, respectively, suggesting that the α value at 10 μm was greater than at 5 μm, and indicating local corrosion damage. However, the α value at 30 μm was smaller than that of 10 μm, which is attributed to higher damage via uniform corrosion than damage induced by local corrosion.

The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys (스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater (해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정)

  • Jeong, S.O.;Park, J.C.;Han, M.S.;Kim, S.J.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.

Corrosion Characteristics of 16Cr-10Ni-2Mo Stainless Steel with Plasma Ion Nitriding Temperatures by Galvanostatic Experiment (16Cr-10Ni-2Mo 스테인리스강의 정전류 실험에 의한 플라즈마 이온질화 온도 변수에 따른 부식 특성)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • The aim of this paper is to investigate the characteristics of electrochemical corrosion with the plasma ion nitriding temperature for 16Cr-10Ni-2Mo stainless steel. The corrosion behavior was analyzed by means of galvanostatic experiment in natural seawater that applied various current density with plasma ion nitriding temperature parameters. In result of galvanostatic experiment, relatively less surface damage morphology and the less damage depth was observed at a nitrided temperature of $450^{\circ}C$ that measured the thickest nitrided layer(S-phase). On the other hand, the most damage depth and unified corrosion behavior presented at a temperature of $500^{\circ}C$.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

A Study on the Effect of Corrosion Resistance According to the Composition Variety of C, Cr, N in Duplex Stainless Steel

  • Kim, Hyeong-Jin;Cho, Kye-Hyun;Jung, Jae-young
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.179-186
    • /
    • 2004
  • Recently the alloy development of duplex stainless steel has been done. On this study we studied the effect of the corrosion resistance according to the composition variety of C, Cr, N in the alloy elements of duplex stainless steel. materials which have below 0.1[mm/year] corrosion rate enable to use for corrosion-resisting materials, generally. On this experiment we inspected the effect of the composition variety of C, Cr, N in duplex stainless steel and the heat treatment, which the condition was the water quenching after the heat treatment for 1hr. The experiment was done on the basis of the ASTM G48A test, Critical pitting temperature(CPT), and ASTM G-61(Electrochemical tests for cyclic polarization).

Effects of Chloride Concentration and Applied Current Density on Stray Current Corrosion Characteristics of 6061-T6 Al Alloy for Electric Vehicle Battery Housing (전기자동차 배터리 하우징용 6061-T6 알루미늄합금의 전식 특성에 미치는 염화물농도 및 인가전류밀도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.348-359
    • /
    • 2022
  • Interest in electric vehicle is on the rise due to global eco-friendly policies. To improve the efficiency of electric vehicles, it is essential to reduce weights of components. Since electric vehicles have various electronic equipment, the research on stray current corrosion is required. In this research, a galvanostatic corrosion experiment was performed on 6061-T6 Al alloy for electric vehicle battery housing using chloride concentration and applied current density as variables in a solution simulating an acid rain environment. As a result of the experiment, when chloride concentration and applied current density were increased, corrosion damage became larger. In particular, pitting damage was dominant at an applied current density of 0.1 mA/cm2. Pitting damage over the entire surface was found at a current density of 1.0 mA/cm2. In conclusion, chloride concentration had a relatively large effect on localized corrosion. The applied current density had a great effect on uniform corrosion. However, in the case of applied current density, localized corrosion was also greatly affected by interaction with chloride.

Laboratory Simulation of Corrosion Damage in Reinforced Concrete

  • Altoubat, S.;Maalej, M.;Shaikh, F.U.A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • This paper reports the results of an experimental program involving several small-scale columns which were constructed to simulate corrosion damage in the field using two accelerated corrosion techniques namely, constant voltage and constant current. A total of six columns were cast for this experiment. For one pair of regular RC columns, corrosion was accelerated using constant voltage and for another pair, corrosion was accelerated using constant current. The remaining pair of regular RC columns was used as control. In the experiment, all the columns were subjected to cyclic wetting and drying using sodium chloride (NaCl) solution. The currents were monitored on an hourly interval and cracks were visually checked throughout the test program. After the specimens had suffered sufficient percentage steel loss, all the columns including the control were tested to failure in compression. The test results generated show that accelerated corrosion using impressed constant current produces more corrosion damage than that using constant voltage. The results suggest that the constant current approach can be better used to simulate corrosion damage of reinforced concrete structures and to assess the effectiveness of various materials, repair strategies and admixtures to resist corrosion damage.