• Title/Summary/Keyword: Corrosion Depth

Search Result 408, Processing Time 0.025 seconds

Influence of Current Density Application Time on the Corrosion Damage of Offshore Wind Steel Substructure in Galvanostatic Corrosion Experiment (해상풍력 하부 구조물용 강재의 정전류 부식 시험 시 전류밀도 인가 시간이 부식손상에 미치는 영향)

  • Lee, Jung-Hyung;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.431-438
    • /
    • 2016
  • This research investigated the relationship between the corrosion damage characteristics of offshore wind steel substructure and the time of current density application by electrochemical accelerated short-term corrosion test. The galvanostatic corrosion was conducted on the steel specimens in natural seawater with a constant current density ranging from $1mA/cm^2$ to $200mA/cm^2$ for 1 ~ 180 min. Macro and micro observation was carried out on the surface of the corrosion damaged area using SEM and 3-dimensional analysis microscope. The weight loss of the specimens before and after was calculated as the difference between the initial weight prior to corrosion and weight after removal of the corrosion product. It was shown that during galvanostaic corrosion process, the corrosion behavior could be characterized by the onset of pitting corrosion in the early stage and the uniform corrosion in the late stage, showing damage development in the depth direction with the time of current application. The result of the 3D analysis revealed that both damage depth and surface roughness increased with increasing time of current application. The weight loss curves with time showed that a coefficient of determination ($R^2$) was relatively high for the relationship between the time of current application and weight loss. As a result, the degree of corrosion can be controlled by simply varying the time of current application.

Correlation of Surface Chloride and Corrosion Amount for Steel Member Exposed in Marine Environment (해양환경에 노출된 강부재의 표면염분과 부식량 상관관계)

  • Min-Gyun Ha;Chang-Jae Heo;Hoon Yoo;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.45-53
    • /
    • 2023
  • In this study, to analyze the correlation of surface chloride and corrosion amount level according to the installation location of steel members exposed to the marine environment, the surface chloride and mean corrosion depth were evaluated by member units for box girder members of the offshore steel bridge and box specimens. The surface chloride was measured monthly using the Bresle method for one year. The corrosion amount was evaluated by converting the weight loss due to corrosion products generated in the monitoring steel plate into mean corrosion depth. As a measurement result of the surface chloride and corrosion amount, relative differences in surface chloride and mean corrosion depth were appeared depending on the shape or installation location of the steel members. Moreover, even if members of the same shape were installed in the same bridge, it was confirmed that the corrosion amount was increased locally and rapidly. The tendency of corrosion amount depending on the surface chloride was evaluated to analyze the correlation between surface chloride and corrosion amount, and the relation equations that can asseses the corrosion amount depending on the surface chloride were analyzed. From the results of the correlation between surface chloride and corrosion amount, it was found that the corrosion amount of the steel member affected by the surface chloride was varied up to about 1.15 times depending on the structural detail.

Relationship between Half Cell Potential and Corrosion Amount Considering Saturated Cover depth and W/C ratios in Cement Mortar (습윤상태의 피복두께와 물-시멘트비를 고려한 반전위와 철근 부식량의 상관성)

  • Ryu, Hwa-Sung;Park, Jae-Sung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.19-26
    • /
    • 2017
  • Concrete is a construction material with porous media and corroded steel inside affects negatively to durability and structural safety. This study aims a derivation of quantitative relationship between measured HCP (Half Cell Potential) and corrosion amount considering cover depth and W/C (water to cement) ratio. For the work, cement mortar specimens with 3 different W/C ratios and 4 different cover depths are prepared, HCPs are measured with 3 different corrosion level. HCP measurement significantly increases in the saturated condition and linear relationship is observed between corrosion level and acceleration period. With increasing corrosion level and W/C ratio, and decreasing cover depth, HCP measurement increases. Considering total corrosion level and HCP measurements, relatively low COV(Coefficient of Variation) of 0.67 is evaluated through multi-linear regression analysis, however higher COVs over 0.90 can be obtained considering level of HCP measurement. In the room condition, corrosion level can be evaluated through measured HCP in the given conditions of cover depth, W/C ratio. diameter of steel inside.

An Experimental Study on the Durability Properties of Repair Mortar for Sewer Spread with Liquefied Antibiotic (액상 항균제를 도포한 하수시설용 단면복구재의 내구특성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae-bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • Recently, Deterioration of the concrete sewer concrete structures by biochemical corrosion has been issued and a development of the inhibition system of corrosion that has been demanded. The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and breakless of concrete. Also, a sulphuric acid reacts with calcium hydroxide to from $CaSO_4\;\cdot\;2H_2O$. This reaction accounts for consumption of the calcium hydroxide present in hardened cement paste. In this study, To present from biochemical corrosion of the sewer repair mortar that was spread with liquefied antibiotic and then its experimental properties were experimentally investigated and to estimate the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the durability properties of restorative mortar spread with antibiotics. Also, testing items such as carbonation depth, choloride ion penetration depth and chemical resistance was tested to estimate the durability properties in third study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And carbonation depth, choloride ion penetration depth and chemical resistance of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment (염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

Relationship between Corrosion in Reinforcement and Influencing Factors Using Half Cell Potential Under Saturated Condition (습윤 상태에서의 반전위를 이용한 철근 부식과 영향 인자 간의 상관성 분석)

  • Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • In this study, the correlation between the influencing factors on corrosion and Half Cell Potential(HCP) measurement was analyzed considering the three levels of W/C ratio, cover depth, and chloride concentration. The HCP increased with enlarged cover depth, so it was confirmed that the increment of cover depth was effective for control of corrosion. Based on the criteria, the case of 60mm cover depth showed excellent corrosion control with under -200mV, indicating increase of cover depth is an effective method for reducing intrusion of external deterioration factors. When fresh water was injected to the upper part of specimens, very low level of HCP was monitored, but in the case that concentrations of chloride were 3.5% and 7.0%, HCP dropped under -200mV. In addition, the case with high volume of unit binder showed lower HCP measurement like increasing cover depth. Multiple regression analysis was performed to evaluate the correlation between the corrosive influence factors and HCP results, showing high coefficient of determination of 0.97. However, there were limitations such as limited number of samples and measuring period. Through the additional corrosion monitoring and chloride content evaluation after dismantling the specimen, more reasonable prediction can be achieved for correlation analysis with relevant data.

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

Variation of Half Cell Potential Measurement in Concrete with Different Properties and Anti-Corrosive Condition (콘크리트 특성에 따른 반전위 측정값의 변화와 부식제어 조건)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2013
  • Half Cell Potential (HPC) technique has been widely adopted for its quantitative evaluation of corrosion possibility. In this study, RC specimens with three different cover depths (10mm, 30mm, and 60mm) and w/c ratios (0.35, 0.55, and 0.70) are prepared and accelerated salt spray test (SST) is performed for 45 days. Steel corrosion occurs in the specimens with 0.55 of w/c and 10mm of cover depth. In the case of 0.70 of w/c and 30mm of cover depth, steel corrosion is also monitored. Considering the effect of cover depth and w/c ratio, HCP evaluation equation is proposed and the condition which can control steel corrosion is obtained. Furthermore, anti-corrosive conditions containing w/c ratio and cover depth are analyzed through Life 365 program and the conditions are compared with the results from this study.

A parametric study on effects of pitting corrosion on stiffened panels' ultimate strength

  • Feng, Liang;Hu, Luocun;Chen, Xuguang;Shi, Hongda
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.699-710
    • /
    • 2020
  • Pitting corrosion commonly shaped in hull structure due to marine corrosive environment seriously causes the deterioration of structural performance. This paper deals with the ultimate strength behaviors of stiffened ship panels damaged by the pits subjected to uniaxial compression. A series of no-linear finite element analyses are carried out for three stiffened panels using ABAQUS software. Influences of the investigated typical parameters of pit degree (DOP), depth, location and distribution on the ultimate strength strength are discussed in detail. It is found that the ultimate strength is significantly reduced with increasing the DOP and pit depth and severely affected by the distribution. In addition, the pits including their distributions on the web have a slight effect on the ultimate strength. Compared with regular distribution, random one on the panel result in a change of collapse mode. Finally, an empirical formula as a function of corrosion volume loss is proposed for predicting the ultimate strength of stiffened panel.