• 제목/요약/키워드: Correlation of a current-magnetic field

검색결과 16건 처리시간 0.021초

실용 고온초전도체의 동저항 특성 (Dynamic Resistance Characteristics of a Technical High-Tc Superconductor)

  • 류경우;최병주;김해종;성기철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1225-1227
    • /
    • 2005
  • A Bi-2223 tape has beer developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called "dynamic resistance". We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external ac magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results and discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.

  • PDF

외부 교류자장이 Bi-2223테이프의 동저항 및 손실특성에 미치는 영향 (Effect of an External AC Magnetic field on Dynamic Resistance and Loss Characteristic in a Bi-2223 Tape)

  • 류경우;최병주
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.473-477
    • /
    • 2005
  • A Bi-2223 tape has been developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called 'dynamic resistance' We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external at magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results ana discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.

초고압 송전선로의 자계크기 해석과 실측 비교 (Analysis and Comparision of Measured and Calculated Value on Magnetic Fields Strength under Transmission Lines)

  • 조성배;이은웅
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.832-838
    • /
    • 1999
  • Recently, there are growing concerns about power frequency electric and magnetic fields coming out from the high voltage transmission lines, because of the wide spread perception of their probable harmful effect on human body. In connection with this trend, this paper describes the electric and magnetic fields measurement result around 154 kV and 345 kV transmission lines, a comparison of measured EMF to calculated one and the correlations between transmission lines currents and measured magnetic fields. Daily maximum and minimum magnetic field quantities under the selected 154 kV and 345 kV transmission lines had been measured for 1 year of 1997 and the average value of magnetic field exposure under the lines were calculated and presented based on the measured data.

  • PDF

Experimental study on the correlation between measurement length and winding or twist pitch for magnetization loss occurring in CORC and TSTC

  • Ji-Kwang Lee;Jinwoo Han;Kyeongdal Choi;Woo-Seok Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.40-44
    • /
    • 2023
  • For high-temperature superconducting power applications that need large current capacity, a large current conductor manufactured using multiple superconducting tape is required. Conductors being studied for large currents capacity such as CORC, TSTC, and RACC have advantages and disadvantages, and in order to use these conductors in coil form and apply them to AC power devices, research on magnetization loss occurring in superconductors due to external magnetic fields is essential. To accurately measure magnetization loss in a conductor that is twisted by stacking straight conductors like TSTC, the correlation between the measuring system and the shape of the sample must be clearly known to accurately measure the loss. In this paper, we will confirm the difference in magnetization loss measurement values according to the correlation between the length of the pickup coil and the twist pitch of the sample in CORC and TSTC shapes, and review considerations for accurate magnetization loss measurement from the results.

SONDRESTROM 비간섭 산란 레이더 자료를 이용한 극지방 전리층의 기후학적 특성 연구 (CLIMATOLOGICAL CHARACTERISTICS OF THE POLAR IONOSPHERE BASED ON THE SONDRESTROM INCOHERENT SCATTER RADAR MEASUREMENTS)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권1호
    • /
    • pp.75-88
    • /
    • 2002
  • 전리층의 전기 전도도와 전기장을 구함으로써 극지방 전리층의 기후학적 특성을 살펴보았다 이를 위해, 총 109일간의 Sondrestrom 비간섭 산란 레이더 자료를 이용하였다. 전기 전도도와 전기장을 이용하여 전리층 전류 분포를 추정하였고, 구해진 전리층 전류 밀도와 그로 인해 유발되는 지상 지자기 변화를 비교하였다. 또한 지상 지자기 변화(특히, D 성분)에 대한 연자기력선 전류의 효과도 검토되었다. Sondrestrom 상공 전리층에 대한 몇 가지 흥미로운 기후학적 특성을 본 연구로부터 알 수 있었다: (1) 주간의 전기 전도도 분포는 주로 태양 EUV복사에 의한 것이며, 야간에는 미약하다. (2) 극관 영역 전리층의 전기 전도도 분포는, 주간에는 태양 EUV복사에 의한 분포를 보이는 반면, 야간에는 Hall 및 Pedersen 전기 전도도의 시간 평균이 각각 1.6 및 1.2 siemen으로 아주 낮다. (3) 남북 성분 전기장의 최대치가 낮 영역에 나타나는 경향이 있다. 동서 성분 전기장은 Chatanika에 비해 강하다 (4) 동서 성분 전류는 낮 영역에서 강하게 흐른다. 정오 바로 전에 강한 남향 전류가 흐른다. (5) 오로라제트전류와 동시에 관측된 지상 지자기 변화 $({{\Delta}}H)$ 사이에 높은 상관관계를 나타낸다. 하지만 무한판상을 가정한 전류가 크게 과소평가 된다. 또한 ${{\Delta}}H$의 관계보다 더 높게 나타나며, 이것은 연자기력선 전류가 ${\Delta}7$에 영향을 미친다는 것을 의미한다.

Analysis of CHAMP Magnetic Anomalies for Polar Geodynamic Variations

  • Kim Hyung Rae;von Frese Ralph R.B.;Park Chan-Hong;Kim Jeong Woo
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2005
  • On board satellite magnetometer measures all possible magnetic components, such as the core and crustal components from the inner Earth, and magnetospheric, ionospheric and' its coupled components from the outer Earth. Due to its dipole and non-dipole features, separation of the respective component from the measurements is most difficult unless the comprehensive knowledge of each field characteristics and the consequent modeling methods are solidly constructed. Especially, regional long wavelength magnetic signals of the crust are strongly masked by the main field and dynamic external field and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar region relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects that are closely related to the geomagnetic storms affecting ionospheric current disturbances. To help isolate regional lithospheric anomalies from core field components, the correlations between CHAMP magnetic anomalies and the pseudo-magnetic effects inferred from satellite gravity-derived crustal thickness variations can also be exploited, Isolation of long wavelengths resulted from the respective source is the key to understand and improve the models of the external magnetic components as well as of the lower crustal structures. We expect to model the external field variations that might also be affected by a sudden upheaval like tsunami by using our algorithm after isolating any internal field components.

Characteristics of the Polar Ionosphere Based on the Chatanika and Sondrestrom Incoherent Scatter Radars

  • Kwak, Young-Sil;Ahn, Byung-Ho
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.489-499
    • /
    • 2004
  • The climatological characteristics of the polar ionospheric currents obtained from the simultaneous observations of the ionospheric electric field and conductivity are examined. For this purpose, 43 and 109 days of measurements from the Chatanika and Sondrestrom incoherent scatter radars are utilized respectively. The ionospheric current density is compared with the corresponding ground magnetic disturbance. Several interesting characteristics about the polar ionosphere are apparent from this study: (1) The sun determines largely the conductance over the Sondrestrom radar, while the nighttime conductance distribution over the Chatanika radar is significantly affected by auroral precipitation. (2) The regions of the maximum N-S electric field over the Chatanika radar are located approximately at the dawn and dusk sectors, while they tend to shift towards dayside over the Sondrestrom radar. The N-S component over Son-drestrom is slightly stronger than Chatanika. However, the E-W component over Chatanika is negligible compared to that of Sondrestrom. (3) The E-W ionospheric current flows dominantly in the night hemisphere over Chatanika, while it flows in the sunlit hemisphere over Sondrestrom. The N-S current over Chatanika flows prominently in the dawn and dusk sectors, while a strong southward current flows in the prenoon sector over Sondrestrom. (4) The assumption of infinite sheet current approximation is far from realistic, underestimating the current density by a factor of 2 or more. It is particularly serious for the higher latitude region. (5) The correlation between ${\Delta}H\;and\;J_E$ is higher than the one between ${\Delta}D\;and\;J_N$, indicating that field-aligned current affects ${\Delta}D$significantly.

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

인공위성 자력계에서 관측된 동아시아 암권의 지자기이상 (Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia)

  • 김정우
    • 지구물리와물리탐사
    • /
    • 제5권3호
    • /
    • pp.157-168
    • /
    • 2002
  • Magsat 인공위성의 자력계로부터 관측된 동아시아 (동경90도-50도, 남위10도-북위50도) 암권의 자기이상을 추출하기 위한 연구를 수행하였다. 이를 위해 ring current correction, ionospheric correction, pass-by-pass correlation등을 실시하였고, 위성트랙 잡음을 효율적으로 제거하기 위한 spectral reconstruction을 실시하였다. 최종적으로 추출된 자기이상의 신뢰도를 검증하기 위해 항공자기이상과 대비하였고, 이를 위해 항공자기이상에 low-pass필터를 적용하여 인공위성 고도에서 관측 불가능한 고주파성분을 제거하였다. 결과적으로 위성자기이상과 항공자기이상은 0.243의 비교적 낮은 상관관계를 보이나 연구지역내 많은 부분에서 양(+)의 상관관계를 갖고 있음이 밝혀졌다. 일반적으로 낮은 상관계수는 각 주파수별 성분의 양과 음의 장관계수가 혼합되어 나타나며, 따라서 본 연구와 같은 포텐셜상의 경우에는 이상체의 심도 및 누중 때문에 양과 음의 상관관계를 갖는 이상체를 분류하는 것이 매우 어렵다. 본 연구에서는 인공위성 자력계 관측값으로부터 연구지역 암권의 자기이상을 성공적으로 추출하였으며 항공자기이상과도 양호한 상관관계를 갖고 있음이 밝혀졌다.

Comparisons of internal self-field magnetic flux densities between recent Nb3Sn fusion magnet CICC cable designs

  • Kwon, S.P.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.10-20
    • /
    • 2016
  • The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature ($T_{cs}$) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the $Nb_3Sn$ CICC internal self-field and its $T_{cs}$ performance. The study also suggests that an optimization process should exist that can further improve the performance of $Nb_3Sn$ based CICC.