• Title/Summary/Keyword: Correlation model

Search Result 6,624, Processing Time 0.031 seconds

On the Analytical Model of Automotive Steering Hoses Containing Tuner and Its Practical Application (튜너 내장 자동차 조향호스의 해석 모델과 실용적 응용)

  • Lee, J.C.;Oh, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This study presents an analytical model of an automotive steering hose containing tuner(flexible spiral metal tube) to reduce the ripple pressure induced by steering vane pump. The double-wall side branch composed in a steering hose containing tuner was analogically considered as a filter in a conduit. Specialized test equipment was manufactured for the estimation of speed of sound in a conduit and measurement of amplitude ratio between the propagated ripple pressures of inlet and outlet of the steering hose. Experimental data of entire frequency ranges can be obtained through the test once in short time. The results of three points' measurement method and cross-correlation method to estimate the speeds of sound in a hose, tuner, and side branch respectively reveal that cross-correlation method can be used practically. The results of simulation and experiment were so close, especially in the range of engine idling speed, that the proposed analytical model in this study was validated. Sensitivity analyses and experiments show that longer tuner is preferable, and that the positive-positive composition of the steering hoses containing tuner is superior to others to attenuate ripple pressure.

  • PDF

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

Study on Resistance of Icebreaker by Density Variation of Synthetic Ice in General Towing Tank (일반 수조에서의 합성 얼음의 밀도변화에 따른 쇄빙선의 저항특성 연구)

  • Lim, Tae-Wook;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.83-86
    • /
    • 2008
  • This paper deals with the experimental works for the correlations of ice resistance for icebreaker with synthetic(model) ice in general towing tank and with refrigerated ice in ice tank. In order to find out the correlation, the density variation is mainly focused in the present study. The model of Terry-Fox ice breaker has been used for the present correlation study because many data are available to be compared. According to the increase of density, the correlation becomes better quantitatively as well as qualitatively. Other parametric studies such as an ice size, a friction coefficient, a bending moment, etc., are also expected to be carried out to have better correlation in a near future. This research could be the basis for the possibility of resistance test using a synthetic ice in a general towing tank instead of an expensive ice tank.

A Study on Speaker Identification Parameter Using Difference and Correlation Coeffieicent of Digit_sound Spectrum (숫자음의 스펙트럼 차이값과 상관계수를 이용한 화자인증 파라미터 연구)

  • Lee, Hoo-Dong;Kang, Sun-Mee;Chang, Moon-Soo;Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.131-142
    • /
    • 2004
  • Speaker identification system basically functions by comparing spectral energy of an individual production model with that of an input signal. This study aimed to develop a new speaker identification system from two parameters from the spectral energy of numeric sounds: difference sum and correlation coefficient. A narrow-band spectrogram yielded more stable spectral energy across time than a wide-band one. In this paper, we collected empirical data from four male speakers and tested the speaker identification system. The subjects produced 18 combinations of three-digit numeric. sounds !en times each. Five productions of each three-digit number were statistically averaged to make a model for each speaker. Then, the remaining five productions were tested on the system. Results showed that when the threshold for the absolute difference sum was set to 1200, all the speakers could not pass the system while everybody could pass if set to 2800. The minimum correlation coefficient to allow all to pass was 0.82 while the coefficient of 0.95 rejected all. Thus, both threshold levels can be adjusted to the need of speaker identification system, which is desirable for further study.

  • PDF

Visualization of propagating process in the seizure discharge by use of cross-correlation analysis (상호상관법에 의한 간질 초점부 피질뇌파 전파의 가시화)

  • Kim Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1471-1477
    • /
    • 2006
  • Electrocorticogram (ECoG) was recorded in one young adult suffering from medically refractory partial seizures a few weeks before resection. ECoG of intractable focal epilepsy was analyzed usins AR model, wavelet analysis and cross-correlation analysis. The cross-correlation of the epileptic discharges was calculated between the electrodes in every unit of time, to get the phase shift. A contour map of the phase shift and the sequential two-dimensional phase shift maps were utilized to localize the epileptic foci and to study their propagation process. More than two epileptogenic foci were localized and two kinds of propagating process were shown. These investigations suggest that epileptic phenomena can be caused by at least two kinds of mechanisms in one patient.

Correlations Among Speed of Sound, Broadband Ultrasonic Attenuation, Broadband Ultrasonic Reflection, and Bone Density in Bovine Cancellous Bone

  • Lee, Kang-Il;Choi, Bok-Kyoungi;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.69-77
    • /
    • 2003
  • Correlations between acoustic properties and bone density have been investigated in bovine cancellous bone. Speed of sound (SOS), broadband ultrasonic attenuation (BUA), and broadband ultrasonic reflection (BUR) were measured in 10 defatted bovine cancellous bone specimens in vitro. SOS showed a significant correlation with the apparent density of the bone. A comparable correlation was observed between BUA and the apparent density. BUR was rather highly correlated with the apparent density. It was shown that BUR had a weak correlation with BUA and a significant correlation with SOS. This indicates that the parameter BUR can provide important information that may not be contained in BUA and SOS and, therefore, can be useful as an alternative diagnostic parameter of osteoporosis. As expected, a linear combination of all three ultrasonic parameters in a multiple regression model resulted in a significant improvement in predicting the apparent bone density.

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

A robust Correlation Filter based tracker with rich representation and a relocation component

  • Jin, Menglei;Liu, Weibin;Xing, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5161-5178
    • /
    • 2019
  • Correlation Filter was recently demonstrated to have good characteristics in the field of video object tracking. The advantages of Correlation Filter based trackers are reflected in the high accuracy and robustness it provides while maintaining a high speed. However, there are still some necessary improvements that should be made. First, most trackers cannot handle multi-scale problems. To solve this problem, our algorithm combines position estimation with scale estimation. The difference from the traditional method in regard to the scale estimation is that, the proposed method can track the scale of the object more quickly and effective. Additionally, in the feature extraction module, the feature representation of traditional algorithms is relatively simple, and furthermore, the tracking performance is easily affected in complex scenarios. In this paper, we design a novel and powerful feature that can significantly improve the tracking performance. Finally, traditional trackers often suffer from model drift, which is caused by occlusion and other complex scenarios. We introduce a relocation component to detect object at other locations such as the secondary peak of the response map. It partly alleviates the model drift problem.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla;Bhuvaneshwar Gera;Sunil Ganju;Salil Varma;N.K. Maheshwari;P.K. Guchhait;S. Sengupta
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4159-4169
    • /
    • 2022
  • Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.