
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 10, Oct. 2019                                 5161 
Copyright ⓒ 2019 KSII 

A robust Correlation Filter based tracker 
with rich representation and a relocation 

component 
 

Menglei Jin1, Weibin Liu1* and Weiwei Xing2 
1 Institute of Information Science, Beijing Jiaotong University 

 Beijing 100044, China 
2 School of  Software Engineering, Beijing Jiaotong University 

Beijing 100044, China 
*Corresponding author: Weibin Liu, wbliu@bjtu.edu.cn 

 
Received December 16, 2018; revised March 24, 2019; accepted April 19, 2019;  

published October 31, 2019 

 

Abstract 
 

Correlation Filter was recently demonstrated to have good characteristics in the field of video 
object tracking. The advantages of Correlation Filter based trackers are reflected in the high 
accuracy and robustness it provides while maintaining a high speed. However, there are still 
some necessary improvements that should be made. First, most trackers cannot handle 
multi-scale problems. To solve this problem, our algorithm combines position estimation with 
scale estimation. The difference from the traditional method in regard to the scale estimation is 
that, the proposed method can track the scale of the object more quickly and effective. 
Additionally, in the feature extraction module, the feature representation of traditional 
algorithms is relatively simple, and furthermore, the tracking performance is easily affected in 
complex scenarios. In this paper, we design a novel and powerful feature that can significantly 
improve the tracking performance. Finally, traditional trackers often suffer from model drift, 
which is caused by occlusion and other complex scenarios. We introduce a relocation 
component to detect object at other locations such as the secondary peak of the response map. 
It partly alleviates the model drift problem. 
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1. Introduction 

Video object tracking is a very important area in computer vision. Because of its widespread 
applications in intelligent transportation, military and human-computer interaction, it has 
already appealed to several countries around in the world. For example, for highways and 
transportation, effective detection and real-time tracking of moving vehicles are prerequisites 
for analysis and identification of vehicle behavior. In a vehicle violation capture system, 
vehicle tracking is also critical. Additionally, in human-computer interactions, manpower 
detection and tracking results are generally used as the basis for human-computer interaction. 
As more and more people have recently become interested in visual tracking, the tracking field 
has made great strides. However, tracking still needs to overcome many challenges, such as 
Deformation, Illumination Variation, Fast Motion, Background Clutter, Scale Variation, 
Occlusion and Out-of-View [1].  

In this paper, we focus on real-time, model-free and single-object tracking. What is 
model-free tracking? This term refers to tracking with a model that has no clear appearance or 
shape. We only use the bounding box information in the first frame to predict the state of the 
object in each subsequent frame. Currently, there are mainly two kinds of methods using in 
video object tracking: the generative approach and discriminative approach. The generative 
approach is mainly used to model the object in the current frame and to find the area that is 
most similar to the current model in the next frame, such as the MEEM (Multiple Experts 
using Entropy Minimization) [2] and the ASMS (Scale-adaptive mean-shift) tracker [3]. The 
discriminative approach, which is also called tracking-by-detection, utilizes various features 
of the image and machine learning algorithms to distinguish the foreground from the 
background. The latest development for the discriminative approach is based on Correlation 
Filter and deep learning. In 2010, the MOSSE (Minimum Output Sum of Squared Error) 
tracker [4] first applies Correlation Filter to the field of video object tracking, and it has 
become the most promising tracking algorithm because of its high speed and accuracy. Later 
on, more improved Correlation Filter based trackers [5]-[11] were proposed, and they have 
become some of the most popular algorithms in video object tracking. Correlation measures 
the similarity of two functions at a certain time. The simplest idea of applying Correlation 
Filters to video object tracking is to design a filter that can get the maximum response value 
when it acts on the object. In particular, the KCF (Kernelized Correlation Filter) tracker [5], 
which was proposed in 2014, has achieved impressive tracking results. The fundamental idea 
which the Correlation Filter based tracking algorithm has successful improvement is that it 
tactfully introduces cyclic shift to solve the problem of insufficient training samples. In 
addition, the use of the characteristics of the cyclic matrix converts dense matrix operations 
into point multiplication, which reduces time complexity and greatly improves tracking 
efficiency. 

However, the Correlation Filter based tracker should be improved acclimatize itself in some 
complicated scenarios. (1) The multi-scale problem, which refers to trackers cannot handle 
scale changes well during the tracking process. The size of the tracking box in KCF/DCF is 
determined by the scale of the object in the first frame, and then the size of the tracking box 
remains unchanged throughout the tracking process. In fact, as the distance between the object 
and the lens changes, the scale of the object will follow this kind of change. (2) The feature 
representation problem, which refers to the extracted image features not being powerful 
enough. This problem affects the accuracy and robustness of the tracker. (3) The tracking drift 
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problem, which is very likely to occur when the object is occluded or moves rapidly during the 
tracking process. Conventional Correlation Filter based trackers default to estimating the 
correct position for each frame. This position estimation method may cause model drift or 
tracking loss problems. 

2. Related Work 
In this section, we will briefly introduce several tracking algorithms as the basis of our work. 
The Struck (Structured Output with Kernels) tracker [12] uses the online structure output 
SVM to solve the tracking problem, which is the best tracking algorithm before the occurrence 
of the Correlation Filter based trackers. The MOSSE tracker [4] first introduced the 
Correlation Filter into the field of tracking, and showed the potential of the Correlation Filter. 
In 2012, Henriques proposed the CSK (Circulant Structure with Kernels) tracker [9], which 
constructs training samples through cyclic shift, and fully solves the problem of insufficient 
training samples in video object tracking. This algorithm uses ridge regression, which is one of 
the simplest classification algorithms in machine learning, to train samples to build a classifier. 
Although it has a decrease in speed compared with the MOSSE tracker [4], it has immensely 
improved the tracking performance. In 2014, the KCF/DCF tracker extended the feature 
representation in the CSK tracker [9] from raw pixels to multi-channel Hog features. Similarly, 
the ACNT (Adaptive Color Name Tracker) [8] extended the feature representation in the CSK 
tracker from raw pixels to Color Names. Both algorithms utilize different features of the image 
to improve tracking performance, yet the multi-scale problem has still existed. To resolve it, 
the DSST (Discriminative Scale Space Tracker) [6] designed two independent Correlation 
Filters: the translation filter and the scale filter. In the tracking process, it first estimates the 
position of the object with the translation filter and then constructs the image pyramid at the 
estimated position to obtain response by the scale filter to ultimately estimates the scale of the 
object. The SAMF (Scale Adaptive Filter with Multiple Feature Integration) tracker [13] uses 
another way to estimate the scale, which is similar to the multi-scale detection method 
commonly used in object detection algorithms. It estimates the scale of the object by detecting 
seven scaled image blocks. Therefore, the algorithm can simultaneously detect the position 
change and scale change of the object. 

In addition to the multi-scale problem in the framework of the Correlation Filter tracking, 
there is a boundary effect problem that is caused by the cyclic shift. Based on DCF, the 
SRDCF (Spatially Regularized Discriminative Correlation Filters) tracker [14] utilize a larger 
detection area and regularization term to penalize the filter coefficients in the boundary area. 
Another algorithm based on MOSSE, the CFLB (Correlation Filters with limited boundaries) 
tracker [15] uses larger size detection blocks and smaller size filters to increase the proportion 
of real samples. Both of these algorithms increase the tracking performance at the expense of 
tracking speed because they all have no closed solution in the DCF tracker. In order to adapt to 
the object deformation and fast motion scenes, the Staple tracker [16] combines the DSST and 
DAT (Distractor-aware tracker) [17]. In the tracking process, the tracker uses a relatively 
simple linear weight strategy to obtain the final response map. To solve the model drift 
problem, another paper [18] proposed an optimized tracking framework. There are also some 
papers [19]-[20] combined traditional algorithms with algorithms based on Correlation Filter. 
They have achieved good tracking results obviously. 

Recently, due to the rise of deep learning, a group of deep-learning-based tracking 
algorithms have also shown good performance, including HCF [21], SiamFC [22], EAST: 
[23], CFNet [24], C-COT [25], ECO [26], MDNET [27], FCNT [28] and so on.  
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3. The Kernelized Correlation Filter 
In this section, we briefly introduce the baseline work: the kernelized Correlation Filter. In 
Section 3.1, we introduce the Discriminative Correlation Filter in detail. In Section 3.2, we 
extend the linear case in DCF to nonlinear case. 

3.1 Discriminative Correlation Filter 
The DCF/KCF tracker uses the Ridge Regression algorithm to train a classifier. It is the 
simplest regression algorithm in in machine learning. To address the lack of training samples, 
the algorithm applies a cyclic shift operation to build training samples. One of the most 
important reasons for using ridge regression is that it can obtain a simple closed solution 
without requiring complex iterations for any input. To simplify the problem, we would give a 
one-dimensional example. The object image block 𝒙𝒙 is a column vector of 𝒏𝒏 dimensions. 
Then, we use the matrix 𝒑𝒑 to shift 𝒙𝒙 in a chain, where 𝒑𝒑 is the permutation matrix. When 𝒖𝒖 is 
a negative number, 𝒙𝒙 moves in the opposite direction. Due to the cyclic property, the shifted 
signal can be obtained with the following formula. 
 
 {𝒑𝒑𝒖𝒖𝒙𝒙|𝒖𝒖 = 𝟎𝟎,𝟏𝟏,𝟐𝟐, …𝒏𝒏 − 𝟏𝟏} (1) 
 
Where 𝒙𝒙𝒊𝒊 satisfies 𝒙𝒙𝒊𝒊 = 𝒑𝒑𝒊𝒊𝒙𝒙 and 𝒊𝒊 represent the number of shifts of the cyclic shift. Therefore, 
the objective function can be defined as: 
 

 𝒎𝒎𝒎𝒎𝒎𝒎𝒘𝒘�(𝒇𝒇(𝒙𝒙𝒊𝒊) − 𝒚𝒚𝒊𝒊)𝟐𝟐
𝒊𝒊

+ 𝝀𝝀‖𝒘𝒘‖𝟐𝟐 (2) 

 
The first part of equation (2) is the least-squares regression, and the second part is the 

regularization term employed to prevent overfitting. 𝒇𝒇 is the function that we are looking for to 
minimize the square error between the actual output of the sample 𝒙𝒙𝒊𝒊 and the regression target 
𝒚𝒚𝒊𝒊. This function satisfies 𝒇𝒇(𝒙𝒙𝒊𝒊) = 𝒘𝒘𝑻𝑻𝒙𝒙𝒊𝒊. We rewrite formula (1) in the form of a matrix. 
 
 𝒎𝒎𝒎𝒎𝒎𝒎𝒘𝒘‖𝑿𝑿𝑿𝑿− 𝒚𝒚‖𝟐𝟐 + 𝝀𝝀‖𝒘𝒘‖𝟐𝟐 (3) 
 
Here, 𝑿𝑿 is a matrix, and each row of it represents a training sample. 𝒘𝒘 indicates the weight 
coefficient. 𝒚𝒚 is a column vector, and each of its columns is a label. By using the property that 
a circulant matrix can be diagonalized by a Fourier transform matrix, we can get: 
 

 𝒘𝒘� =
𝒙𝒙�∗ ⊙ 𝒚𝒚�

𝒙𝒙�∗ ⊙ 𝒙𝒙� + 𝝀𝝀
 (4) 

 
Where 𝒚𝒚�  and 𝒙𝒙�  are the Fourier transforms of 𝒚𝒚  and 𝒙𝒙 respectively, and 𝒙𝒙�∗  represents the 
conjugate transpose of 𝒙𝒙�. 

3.2 The Kernelized Correlation Filter 
In the non-linear case, the objective function can be expressed as, 
 
 𝒘𝒘 = min

𝑤𝑤
‖𝝓𝝓(𝑿𝑿)𝒘𝒘− 𝒚𝒚‖𝟐𝟐 + 𝝀𝝀‖𝒘𝒘‖𝟐𝟐   (5) 
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Where 𝝓𝝓 denotes a nonlinear mapping function that can make the mapped sample linearly 
separable in the new space. 𝒘𝒘 is a vector in the space that is spanned by the vector group 
[𝝓𝝓(𝒙𝒙𝟏𝟏),𝝓𝝓(𝒙𝒙𝟐𝟐)𝝓𝝓(𝒙𝒙𝟑𝟑), …𝝓𝝓(𝒙𝒙𝒏𝒏)]. Therefore, we can obtain the following formula. 
 

 𝒘𝒘 = �𝜶𝜶𝒊𝒊𝝓𝝓(𝒙𝒙𝒊𝒊)
𝒊𝒊

 (6) 

 
Here, 𝜶𝜶𝒊𝒊 is the coefficient in the linear representation. Using equation (6), equation (5) can be 
converted to: 
 
 𝜶𝜶 = 𝐦𝐦𝐦𝐦𝐦𝐦

𝜶𝜶
�𝝓𝝓(𝑿𝑿)𝝓𝝓(𝑿𝑿)𝑻𝑻𝜶𝜶 − 𝒚𝒚�𝟐𝟐 + 𝝀𝝀‖𝒘𝒘‖𝟐𝟐 (7) 

 
After deduction, it can be simplified as: 
 
 𝜶𝜶 = (𝒌𝒌 + 𝝀𝝀𝝀𝝀)−𝟏𝟏𝒚𝒚 (8) 
 
𝑰𝑰 in the equation (8) represents the unit matrix. 𝒌𝒌 is a nuclear matrix of nuclear space. It 
satisfies 𝒌𝒌 = 𝝓𝝓(𝑿𝑿)𝝓𝝓(𝑿𝑿)𝑻𝑻. Each element in 𝒌𝒌 is, 
 
 𝒌𝒌𝒊𝒊,𝒋𝒋 = 𝝓𝝓𝑻𝑻(𝒙𝒙𝒊𝒊)𝝓𝝓�𝒙𝒙𝒋𝒋� = 𝒌𝒌�𝒙𝒙𝒊𝒊 ,𝒙𝒙𝒋𝒋� (9) 
 
Where 𝒙𝒙𝒊𝒊  and 𝒙𝒙𝒋𝒋  satisfy 𝒙𝒙𝒊𝒊 = 𝒑𝒑𝒊𝒊𝒙𝒙  and 𝒙𝒙𝒋𝒋 = 𝒑𝒑𝒋𝒋𝒙𝒙 , respectively. We can prove that 𝒌𝒌  is a 
circulant matrix. Once again, by using the properties of the circulant matrix, we can obtain the 
formula, 
 

 𝜶𝜶 = 𝑭𝑭−𝟏𝟏 �
𝒚𝒚�

𝒌𝒌�𝒙𝒙𝒙𝒙 + 𝝀𝝀
� (10) 

 
Where 𝒌𝒌𝒙𝒙𝒙𝒙 is the first row of the nuclear matrix 𝒌𝒌.  𝑭𝑭−𝟏𝟏  represents the inverse Fourier 
transform. 𝒌𝒌�𝒙𝒙𝒙𝒙 and 𝒚𝒚� represent the Fourier transforms of 𝒌𝒌𝒙𝒙𝒙𝒙 and 𝒚𝒚, respectively. 

After the filter is trained, we can detect the object from the next frame of image. To improve 
the computational efficiency, the candidate samples are constructed using the cyclic shift 
method, which is the same as the method for constructing the training samples. We get the 
subwindow image in the current frame, where the position is the same as the object in the 
previous frame. We assume that the base sample is 𝒛𝒛. We can obtain a candidate image patch 
𝒛𝒛𝒋𝒋 with the following formula. 
 
 𝒛𝒛𝒋𝒋 =  𝒑𝒑𝒋𝒋𝒛𝒛 (11) 
 
Where 𝒋𝒋 represents the number of shifts of the cyclic shift. The response obtained on each 
sample 𝒛𝒛𝒋𝒋  can be calculated using the following formula. 
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 𝒇𝒇�𝒛𝒛𝒋𝒋� = 𝒘𝒘𝑻𝑻𝝓𝝓�𝒛𝒛𝒋𝒋� = �𝜶𝜶𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

𝝓𝝓𝑻𝑻(𝒙𝒙𝒊𝒊)𝝓𝝓�𝒛𝒛𝒋𝒋� (12) 

 
Then, we can quickly calculate the response values of all the candidate image patches by the 
following formula. 
 
 𝒇𝒇(𝒛𝒛) = (𝒌𝒌𝒛𝒛)𝑻𝑻𝜶𝜶 = �𝑪𝑪(𝒌𝒌𝒙𝒙𝒙𝒙)�𝑻𝑻𝜶𝜶 (13) 
 
Where 𝒌𝒌𝒛𝒛  represents the kernel matrix between all training sample image blocks and all 
candidate image blocks. Because 𝒌𝒌𝒛𝒛 can be proved as a cyclic matrix, it satisfies 𝒌𝒌𝒛𝒛 = 𝑪𝑪(𝒌𝒌𝒙𝒙𝒙𝒙). 
Through Fourier transform, equation 13 can be converted to: 
 
 𝒇𝒇 = 𝑭𝑭−𝟏𝟏�𝒌𝒌�𝒙𝒙𝒙𝒙 ⊙ 𝜶𝜶�� (14) 
 
Where 𝒌𝒌�𝒙𝒙𝒙𝒙 represents the Fourier transform of 𝒌𝒌𝒙𝒙𝒙𝒙. The solution to 𝒌𝒌𝒙𝒙𝒙𝒙 has different forms for 
different kernel functions. When using the Gaussian kernel function, 𝒌𝒌𝒙𝒙𝒙𝒙 can be expressed as: 
 

 𝒌𝒌𝒙𝒙𝒙𝒙 = 𝒆𝒆𝒆𝒆𝒆𝒆(−
𝟏𝟏
𝝈𝝈𝟐𝟐

(‖𝒙𝒙‖𝟐𝟐 + ‖𝒛𝒛‖𝟐𝟐 − 𝟐𝟐𝑭𝑭−𝟏𝟏(𝒙𝒙�∗ ⊙ 𝒛𝒛�))) (15) 

 
Here, 𝝈𝝈 represents the standard deviation of the Gaussian distribution. 𝒛𝒛� represents the Fourier 
transforms of 𝒛𝒛. 

4. Proposed Method 
In this section, we will describe the method we have proposed in detail. In section 4.1, we 
introduce a scale Correlation Filter that can quickly estimate the scale of the object. In both 
sections 4.2 and 4.3, we will describe the two important components of the proposed method 
in detail, which are the most noteworthy parts of this paper.  
  As shown in Fig. 1, we clearly show the entire tracking process for the algorithm. From Fig. 
1, we can see that our tracking framework is mainly divided into three parts: position 
estimation, re-location, and scale estimation. In the first frame of the video sequence, we train 
the required translation filter and scale filter. In each of the following frames, the position of 
the object is estimated by the translation filter. Then, we use the obtained response map to 
detect the tracking confidence. When the tracking confidence is high, it goes directly to the 
next step. When the tracking confidence does not reach the standard, it starts the relocation 
component. Finally, we use scale Correlation Filter to determine the exact scale of the object. 

4.1 Fast Scale Correlation Filter 
It is clear that the KCF/DCF tracker does not consider the scale change of the object during the 
tracking process. To solve the multi-scale problem, we incorporate the scale Correlation Filter 
in DSST into the KCF tracking framework. Before estimating the scale of the object, we 
primarily determine the position of the object through a Kernelized Correlation Filter. Then, 
we extract a series of samples of different scales in the current position to train a 
one-dimensional scale filter. Its objective function is: 
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 𝜺𝜺 = ��𝒉𝒉𝒍𝒍 ∗ 𝒇𝒇𝒍𝒍 − 𝒈𝒈
𝒅𝒅

𝒍𝒍=𝟏𝟏

�

𝟐𝟐

+ 𝝀𝝀��𝒉𝒉𝒍𝒍�
𝟐𝟐

𝒅𝒅

𝒍𝒍=𝟏𝟏

 (16) 

 
Where 𝒍𝒍 = 𝟏𝟏,𝟐𝟐, …𝒅𝒅 is the dimension of the feature, 𝒉𝒉 is the scale filter we want to train, 𝒇𝒇 is 
the input image patch, 𝒈𝒈 is the expected output of the Gaussian distribution, and 𝝀𝝀 is the 
regularization coefficient that eliminates the zero-frequency component of the spectrum.  

 
Fig. 1. The pipeline of our proposed method 

 
By simplifying, we can find: 
 

 𝑯𝑯𝒍𝒍 =
𝑮𝑮�𝑭𝑭𝒍𝒍

∑ 𝑭𝑭�𝒌𝒌𝑭𝑭𝒌𝒌 + 𝝀𝝀𝒅𝒅
𝒌𝒌=𝟏𝟏

=
𝑨𝑨𝒕𝒕𝒍𝒍

𝑩𝑩𝒕𝒕
 (17) 
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By convention, variables in the time domain are generally represented by lowercase letters, 
while variables in the frequency domain are generally represented by uppercase letters. In 
particular, 𝑮𝑮�  and 𝑭𝑭�𝒌𝒌  represent the conjugate complex numbers of 𝑮𝑮 and 𝑭𝑭𝒌𝒌 , respectively. 
Therefore, the response can be obtained through the following formula. 
 

 𝒚𝒚 = 𝑭𝑭−𝟏𝟏 �
∑ 𝑨𝑨�𝒍𝒍𝒁𝒁𝒍𝒍𝒅𝒅
𝒍𝒍=𝟏𝟏
𝑩𝑩 + 𝝀𝝀 � (18) 

 

Here, 𝒁𝒁 is the Fourier transform of a feature map at the predicted location. 
It is worth noting that before the feature was extracted, we performed a double-threshold 

judgment for the tracking object. When the size of the object is larger than 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎, 
we reduce its resolution. On the one hand, we do not require so many details, but on the other 
hand, the details increase the computation time and affects the real-time tracking. When the 
tracking object is smaller than 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎, we upsample the object image block to obtain 
more texture information for the image, which improves the tracking accuracy [26].  

In the KCF tracker, the expansion coefficients in width and height of the object are both set 
to 2.5. However, by analyzing the video sequences, the high object may move in a fixed 
direction. For example, pedestrian scenes basically only contain motion in the left or right 
direction. Therefore, when the height and width ratio exceed 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒔𝒔𝒔𝒔(𝟏𝟏) 𝒔𝒔𝒔𝒔(𝟐𝟐)⁄ , we 
increase the search range in the width direction. Specifically, through experimental 
verification, the expansion coefficient in height of the object is set to 2.1, and the expansion 
coefficient in width of the object is set to 2.5 [21]. 

As we all know, training an independent filter requires a certain number of samples. 
Therefore, the number of scales cannot be set too small. However, If the number of scales is set 
too large, it will seriously affect the speed of the tracker. Additionally, the number of scales 
must be set to an odd number. Because it is possible that the scale of the object will not change, 
and the scaling of the scale appears in pairs, such as 0.9 and 1.1. Finally, by tuning the 
parameters on the OTB-2013 dataset, we reduced the number of scales from 33 to 17 in our 
work. The size of the response map is 1 × 17. Then, we used the triangle interpolation 
algorithm to interpolate the number of scales from 17 to 33 for more advanced accurate scale 
positioning [7].  

4.2 Rich Image Feature Representation 
Recently, more people have paid more attention to the observation model in tracking without 
considering the image feature representation module. We can draw a conclusion from a 
previous paper [29] that feature extraction is the most important part of the tracking process. 
Choosing a different observation model when the feature is good enough is not very important 
for tracking results. From recent research, we found that the FHOG (Fast Histogram of 
Oriented Gradients) feature is very popular for non-deep learning algorithms. The FHOG 
feature is a classic dense trait descriptor that has achieved good results in tracking. However, it 
is not enough to utilize a single feature in complex scenes. In our work, we come up with more 
powerful feature representation for video object tracking. We found that the nuclear 
correlation only needs to be modified as shown in formula (19) when KCF deals with 
multi-channel problems. Therefore, it does not provide more complicated calculations. 

 𝒌𝒌𝒙𝒙𝒙𝒙′ = 𝒆𝒆𝒆𝒆𝒆𝒆 (−
𝟏𝟏
𝝈𝝈𝟐𝟐

(‖𝒙𝒙‖𝟐𝟐 + ‖𝒙𝒙′‖𝟐𝟐 − 𝟐𝟐𝑭𝑭−𝟏𝟏(�𝒙𝒙�𝒄𝒄
∗ ⊙ 𝒙𝒙�𝒄𝒄

𝒄𝒄

))) (19) 

Where 𝒙𝒙′ can represent both 𝒙𝒙 and 𝒛𝒛. Therefore, this formula can be used to solve both 𝒌𝒌𝒙𝒙𝒙𝒙 
and 𝒌𝒌𝒙𝒙𝒙𝒙. Here, 𝒄𝒄 represents the number of connected channels, i.e., 𝒙𝒙 = [𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,⋯𝒙𝒙𝒄𝒄]. 
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In the process of designing feature representation, we fuse FHOG features with the Color 
Names. The Color Names are the human language tags of color. We often make use of them to 
describe the world around us. Prior papers [30]-[31] detail the process of learning 11 color 
from the images in Google, using PLSA (Probabilistic Latent Semantic Analysis). Like the 
ACNT tracker, we can convert RGB values into Color Names features through mapping 
matrices. 

In addition, we consider that the gradient intensity of the target image generally does not 
vary drastically during the tracking process. Therefore, we also consider the gradient value of 
the image, as well as the processing and combination of image gradients. Inspired by the CNN 
features, we first use the Sobel operator to calculate image gradients in horizontal, vertical, 
45-degree and 135-degree planes. Let us consider horizontal direction gradient processing as 
an example. We assume that the size of the horizontal direction gradient value matrix 𝑫𝑫𝒙𝒙 is 
𝒎𝒎 ∗ 𝒏𝒏. When the element in 𝑫𝑫𝒙𝒙 is smaller than−𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, the corresponding element is set 
to 1. When the element in 𝑫𝑫𝒙𝒙 is larger than 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, the corresponding element is set to 2. 
The value of the remaining position is 0. Then, we divide the matrix into 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∗ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 
cells. Next, we cycle through the pixel values in the cell and record the number of pixel values 
for a specific value. We will calculate the integral image as 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇. Finally, we use the 
following formula to normalize the integral image: 
 

 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇./(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ∗ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) (20) 
 

Finally, we can obtain an (𝒎𝒎/𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) ∗ (𝒏𝒏/𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) ∗ 𝟑𝟑  matrix. Using the same 
approach, we can cope with gradients in other directions. So, we can obtain a 12-dimensional 
feature. 

4.3 Relocation Component 
Usually, we utilize a trained Correlation Filter and candidate image patches to calculate the 
response map during the detection process. We identify the location of the object by finding 
the location of the maximum in the response map. However, the LMCF (Large Margin with 
Circulant Feature Maps) tracker [32] propose that the response map is not always distributed 
in a Gaussian in complex scenes, especially when the tracking object is occluded and moving 
fast. At this point, the location of the object may not be at the position of the peak of the 
response map. Once we adopt the detection results directly, there is a great possibility that 
there would be tracking drift and even more tracking loss. After being enlightened by LCT 
(Long-term Correlation Tracker) [33], we introduced a relocation component. Compared with 
LCT, it is not necessary to train an additional Correlation Filter and a detector to reflect the 
tracking confidence by using our method, which will enhance the tracking efficiency. During 
the tracking process, we utilize the maximum response value and 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨_𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 [32] as 
the tracking confidence indicator. In our work, it is defined as: 
 

 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨_𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
|𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎|𝟐𝟐

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎�∑ �𝒈𝒈𝒎𝒎,𝒏𝒏 − 𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎�
𝟐𝟐

𝒎𝒎,𝒏𝒏 �
 (21) 

Where 𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎 represent the maximum and minimum values of the response map, 
respectively. 𝑚𝑚 and 𝑛𝑛 represent the length and width of the response map, respectively. When 
these two tracking confidence indicators are less than the historical mean within a specified 
range, we think the tracking result is inaccurate, at the same time the relocation component 
will work. Considering the expensive calculation cost, we did not adopt the method of global 
search in the process of relocation.  We believe there are several locations where tracking 
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object is most likely to occur. First, when the object moves fast, it is not in the vicinity of the 
position of the preceding frame. Through the paper [32], we found that the location of the 
object may be at the second peak or other peaks. Additionally, when the object does not move 
quickly, it should probably appear near the location of the position estimation in the previous 
frame. We use the following formula to calculate the length of the search range. 
 

 𝒍𝒍 = �
𝒄𝒄𝟏𝟏

𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎 ∗ (𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕_𝒔𝒔𝒔𝒔(𝟏𝟏) + 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕_𝒔𝒔𝒔𝒔(𝟐𝟐))
 (22) 

 

Here, 𝒄𝒄𝟏𝟏 is a constant. We set a step size in the rectangle search area to determine the 
position of the object. We use the Correlation Filter model to traverse the estimated positions 
of these two cases and compare the resulting response plots. The maximum position of 𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎 
is the final estimated position of the object. 

5. Experiments and Analysis 
In this section, we mainly introduce the experimental results of the algorithm. Before 
presenting the experimental results, we will introduce the algorithm's experimental setup in 
section 5.1. In Sections 5.2 and 5.3, we will test and analyze the performance of the algorithms 
on the OTB-2013 [1] and OTB-2015 [34] datasets in detail to fully illustrate the effectiveness 
of the algorithm.  

5.1 Experimental Setup 
In this section, we mainly introduce the Experimental Setup for this paper. In section 5.1.1, we 
show the parameter settings for our experiments. Then, in Sections 5.1.2 and 5.1.3, we 
separately describe the datasets used in this paper, the evaluation indicators and evaluation 
methods. 

5.1.1 Parameters 
In this paper, we implemented the algorithm that we proposed using MATLAB language. It 
should be mentioned that the choice of parameters is very important when testing on a dataset. 
Even if there are slight differences, they are very likely to affect the performance of the trace. 
Table 1 below shows some of the parameters selected in the paper. 
 

Table 1. Main parameters used in our method 
Parameter Value 

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 150*150 
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 80*80 
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 8 

𝑐𝑐1 20.5 
cellSize 4 

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠(1) 𝑠𝑠𝑠𝑠(2)⁄  2.50 
orientation 9 

appearance model update rate 0.012 

5.1.2 Datasets 
To test the performance of the algorithm, we adopt the OTB-2013 [1] and OTB-2015 [34] 

datasets, which are widely accepted in the video object tracking field. Prior to the advent of 
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OTB-2013 [1], without an accepted database, we could not compare the performance of the 
algorithm well. Therefore, the significance of this database is pretty valuable and it facilitates 
the development of tracking algorithms. This dataset contains of 50 video sequences. 
OTB-2015 [34] extends it from 50 video sequences to 100 video sequences. The video 
sequence includes 11 complex tracking scenes: Illumination Variation, Scale Variation, 
Occlusion, Deformation, Motion Blur, Fast Motion, In-Plane Rotation, Out-of-Plane Rotation, 
Out-of-View, Background Clutters, Low Resolution. Of these 100 sequences, there are 26 
gray sequences and 74 colorful sequences. The tracking targets appearing in this database 
cover 36 bodies, 26 faces or heads, and a total quantity of 58897 frame images. The lengths of 
the video sequence include both short-term and long-term lengths. 

5.1.3 Evaluation indicators and evaluation methods 
The database provides two kinds of evaluation indicators: accuracy and success rate. Accuracy 
is an evaluation indicator that is used to measure the center location error. Specifically, it 
calculates the accuracy of the tracker through the difference between the estimated position of 
the algorithm and the ground truth. In the precision plot, since different thresholds correspond 
to different accuracy rates, we can obtain a central pixel position error curve. To some extent, 
this indicator can be used to measure the accuracy of tracker. However, this indicator has an 
obvious disadvantage: it does not reflect the changes in the scale of the tracking object. The 
success rate indicator solves this problem. It indicates the overlap score. The area overlap rate 
is measured using the ratio of overlapping areas and can be calculated by the following 
formula: 
 

 ∅ =
𝑺𝑺𝒕𝒕 ⋂  𝑺𝑺𝒈𝒈
𝑺𝑺𝒕𝒕 ⋃ 𝑺𝑺𝒈𝒈

 (23) 
 

In this formula, 𝑺𝑺𝒕𝒕 denotes the area estimated by the proposed algorithm, and  𝑺𝑺𝒈𝒈 denotes 
the actual tracking target area. We combine this indicator with a precision plot to evaluate the 
algorithm tracking performance and show that the combination is more reliable and fairer for 
the performance between the algorithms. 

Additionally, the dataset provides three evaluation methods: one-pass evaluation (OPE), 
temporal robustness evaluation (TRE), and spatial robustness evaluation (SRE). The 
difference in the conventional OPE, the TRE starts tracking from any frame with adding time 
interference. The SRE performs the tracking test by adding interference to the ground truth of 
the first frame of the image. In this paper, we only focus on OPE because OPE is basically the 
same as the other two evaluation methods. 

5.2 Comparison with the-state-of-the-art trackers 
In this section, we compare the proposed algorithm with the current 20 state-of-art trackers   on 
the OTB-2013 and OTB-2015 datasets. The algorithms used for comparison are classic. For 
example, the most cited algorithm us DCF/KCF in the Correlation Filtering field. The 
comparison algorithm includes not only the original algorithm but also some improved 
algorithm based on the original tracking algorithm, including the DCF_CA (Context-Aware 
Discriminative Correlation Filter) [35], and the KCF_AT, DCF_AT (Target response 
Adaptation Correlation Filter) [36] tracker. We also compare the algorithms DSST and SAMF 
that can solve multi-scale problems as well as their improvements: FDSST (Fast 
Discriminative Scale Space Tracker) [7], SAMF_CA [35], and SAMF_AT [36]. Additionally, 
we compare some trackers based on deep learning such as DLSSVM (Dual Linear Structured 



5172                                         Jin et al.: A robust Correlation Filter based tracker with rich representation and a relocation component 

SVM and Explicit Feature Map) [37] and SiamFC. Currently, deep learning is very popular 
because of its good tracking performance. LCT, MEEM, SRDCF, Staple, Staple_CA, and 
RPT (Reliable Patch Tracker) [38] are also taken into account. In the related work, we have 
introduced these algorithms in detail. 

We tested the performance of these algorithms on the OTB-2013 and OTB-2015 datasets. 
Fig. 2 shows the experimental results in detail. In the upper right corner of the image, we show 
the top ten trackers that track performance. From Fig. 2, we can easily find that our proposed 
tracker shows good tracking performance for both evaluation indicators. On the OTB-2013 
dataset, the accuracy is 86.1% and the success rate is 64.9%. Compared with KCF, these two 
indicators increased by 12.1% and 13.5% respectively. On the OTB-2015 dataset, the 
accuracy is 81.3% and the success rate is 60.3%. Compared with the original KCF, these two 
indicators increased by 11.7% and 12.6%, respectively. Additionally, we can easily find that 
LCT, SRDCF, and SAMF_CA have also achieved good tracking results for these two datasets.  

On the OTB-2013 dataset, LCT ranks second in both evaluation indicators. LCT is a 
long-term object tracker. It uses three Correlation Filters and a re-detection module in its 
tracking framework. Similar to our algorithm, the re-detection module mitigates the effects of 
occlusion and model drift. On the OTB-2015 datasets, the second-place algorithms are 
SRDCF and SAMF_CA, respectively. The similarities between these two algorithms are that 
they use different methods to solve the boundary effect problems, which have caused by cyclic 
shifts. Therefore, these methods of mitigating border effects are effective and worthy being 
referenced.  

 

 
Fig. 2. Experimental results of the state-of-the-art trackers on the OTB-2013 and OTB-2015 datasets. (a) 
Precision plot of OPE on OTB-2013. (b) Success plot of OPE on OTB-2013. (c) Precision plot of OPE 

on OTB-2015. (d) Success plot of OPE on OTB-2015. 
 

As we all know, tracking is usually very complicated in practical scenarios. Tracking 
algorithms may encounter various challenges during the tracking process. In our work, we 
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have tested not only the overall performance of our proposed algorithm on the datasets but also 
the tracking performance for the tracker for all kinds of attributes. Fig. 3 shows the partial test 
results for the trackers on OTB-2013 and OTB-2015 datasets. In this section, we only use the 
AUC evaluation indicator. From the test results, whatever it is on OTB-2013 or on OTB-2015, 
our proposed algorithm is considered the best when the target is under Out-of-Plane Rotation, 
Occlusion or In-Plane Rotation. Under Scale Variation and Deformation attribute, our 
proposed algorithm ranks second compared with other algorithms. 

 
Fig. 3. Experimental results of the state-of-the-art trackers on the OTB-2015 dataset. (a) Success plots 
of OPE under occlusion. (b) Success plots of OPE under scale variation. (c) Success plots of OPE under 

in-plane rotation. (d) Success plots of OPE under deformation. 
 

Next, we conducted a detailed attribute analysis. On the OTB-2015 dataset, the success rate 
of our method is 55.3% under Scale Variation. We found that the algorithm can still obtain 
good tracking results with Scale Variation because we combined position estimation with 
scale estimation. During the tracking process, we did not directly adopt the results of the 
position estimation of the target. We constructed an image pyramid at the estimated position to 
estimate the scale of the target. Additionally, our scale Correlation Filter is constantly updated 
linearly. Here, we applied the compressed scale Correlation Filter to the KCF tracker and 
called it KCF_Scale. The specific implementation details are in Section 4.1. We then 
compared the KCF_Scale tracker with the SAMF and DSST multi-scale trackers on the 
OTB-2013 and OTB-2015 datasets. The experimental results are shown in Table 2. We can 
see that the KCF_Scale tracker has achieved a great speed increase while maintaining a high 
precision. On the one hand, the reduction in the number of scales increases the speed of 
tracking. On the other hand, we use another trick in the algorithm implementation to improve 
the tracking speed. We utilize the Hermitian symmetry of the Fourier coefficient of a real 
function to reduce the computational complexity and memory consumption by half. It can 
greatly improve tracking speed without losing any performance. 
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Table 2. Experimental results on the OTB-2013 and OTB-2015 datasets. 
Tracker Precision 

(2013) 
AUC 
(2013) 

Speed 
(fps) 

Precision 
(2015) 

AUC 
(2015) 

Speed 
(fps) 

KCF_Scale 0.793 0.581 86.5 0.762  0.561 85.4 

SAMF 0.785 0.579 18.5 0.751 0.553 17.9 

DSST 0.740 0.554 28.9 0.680 0.513 21.5 
 
Additionally, our method’s success rate is 57.5% under occlusion. The introduction of the 

relocation component enhances the algorithm's ability to resist occlusion. For other attributes, 
our proposed method also shows good performance on the benchmark. To show the tracking 
results of different trackers in the video sequence more intuitively, we show the comparisons 
between our method and other trackers in several sequences in Fig. 4. 

 

 
 

Fig. 4. Comparison of the tracking bounding boxes generated by different trackers for several 
challenging sequences. (From top to bottom: Freeman3, Jumping, Car, Dog, BlurOwl).  The black, red, 
green, and blue tracking boxes are generated by our method, DCF_CA, DSST, and KCF, respectively. 
 

5.3 Self-contrast Test 
In this section, we verified the effectiveness of our work by experiments. We still use the 
OTB-2013 and OTB-2015 datasets. We applied different components on the base trackers 
separately. For example, in the KCF_RF tracker, we fused different features. The KCF_RC 
tracker adds the relocation component to the KCF. The same is true for other algorithms, such 
as the DCF_RF, DCF_RC, SAMF_RF, and SAMF_RC tracker. Here, we take the KCF tracker 
as an example. The accuracy of the KCF_RF tracker is 79.6%, and the success rate is 54.7%. 
Compared with its base tracker, its accuracy is increased by 5.6% and the success rate is 
increased by 3.3%. The accuracy of the KCF_RC tracker is 77.9%, and the success rate is 
54.0%. Compared with its base tracker, its accuracy is increased by 3.9% and the success rate 
is increased by 2.6%. It is not difficult to determine from Fig. 5 that the innovations we 
propose are all valid. 
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Fig. 5. Experimental results of various combination trackers on OTB-2013 and OTB-2015 datasets. 

6. Conclusion 
In this paper, we propose a novel tracking algorithm. The introduction of the double threshold 
judgment and the triangle interpolation algorithm makes the scale estimation more quickly and 
accurately. In the feature extraction module, we develop a novel and powerful feature that can 
significantly improve the tracking performance. In addition to the traditional FHOG and CN 
features, we also consider the gradient value of the image, as well as the processing and 
combination of image gradients. Furthermore, the position of the tracking object may not be in 
the right position when the response value is maximized. To solve this problem, we introduce 
a relocation component. It is a real-time tracker. 
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