• Title/Summary/Keyword: Correlation Between Water Quality

Search Result 501, Processing Time 0.028 seconds

An Analysis of Effects of Water Perturbation Exercise on Physiological Cost Index and Gait Ability in Stroke Patients (수중 동요 훈련이 뇌졸중 환자의 생리학적 소비지수와 보행 능력에 미치는 효과 분석)

  • Park, Seungkyu;Park, Samheon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSE : This study attempts to find the effects of water perturbation exercise performed on stroke patients in their physiological cost index and gait ability tests. METHOD : The subjects were 30 stroke patients, water perturbation exercise group was performed 3 day per week, for 40 minutes a day, for a period of eight weeks. The physiological cost index and gait of all subjects were assessed by using the polar, 6 Minute Walk Test (6MWT), and 10 meter Walk Test(10mWT) at pre training and post training. Paired t-test was used to analyze change before and after intervention in group. Pearson's correlation was used to analyze correlation of all variables. RESULT : Water perturbation exercise group showed increased physiological cost index. Water perturbation exercise increased gait ability, showing a significant difference. Showing the correlation between the relatively high amount between physiological cost index and 6 minutes walking test. CONCLUSION : From the result of the study, we found that water perturbation exercise was effective in improving physiological cost index and gait ability. The patient is considered to be used by itself to involve the treatment and the risk of falling from the lowered state into the treatment method for the intensive treatment of stroke patients to be useful in improving the cardiovascular system and ability to walk. Through underwater training for stroke patients in the future on the basis of this study it is considered to require additional clinical studies on the impact on daily living and quality of life of stroke patients.

Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data (LANDSAT TM 영상자료를 이용한 호수 수질 관측)

  • Kim, Tae-Geun;Kim, Kwang-Eun;Cho, Gi-Sung;Kim, Hwan-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.23-33
    • /
    • 1996
  • The conventional monitoring of water quality constrained by time and equipment produce neither complete nor synoptic geographic coverage of pollutant distribution, transport, and water quality. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly being involved in the lacustrine environmental research. Consequently, satellite remote sensing, with its synoptic coverage, is used to obtain the eutrophication-related water quality parameters in Daecheong reservoir in this study. The approach involved acquisition of water quality samples from boats of 15 sites on 20 June 1995 and 30 sites on 18 March 1996, simultaneous with Landsat-5 satellite overpass. Regression models have been developed between the water quality parameters and Landsat Thematic Mapper(TM) digital data. The best regression model was determined based on the correlation coefficient which was higher than 0.6. As a result, satellite remote sensing can provide meaningful information on water quality parameters. The regression models developed in this study show good relationship for transparency, turbidity, SS, and chlorophyll, but not for TN and TP because their spectral characteristics are not well defined.

  • PDF

A study on Spatiotemporal Variations of distribution characteristics in Artificial Rivers of the Brackish Water Zone (기수역 인공하천에서 시공간적 수질분포 특성 연구)

  • Kim, Yoon-Jeong;Choi, Ok Youn;Han, Ihn-Sup
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.89-97
    • /
    • 2018
  • The purpose of this reaserch is to analyze the charateristics of water quality in space through the operation of ARA River in Artificial Rivers of the Brackish Water Zone. The spatial distribution measured water temperature and salt levels for the surface, middle and deep layers by dividing the four areas of Incheon, Sicheon, Gyeyang and Gimpo. Water temperature did not vary much by water depth and branch, and its purpose is to maintain stable water environment through correlation analysis and operation. To examine the temporal and spatial distribution patterns of the Arachon, we measured DO on the Incheon branch, Sicheon, Gyeyang and Gimpo branch twice a month, and on the surface, the temperature level, The water temperature did not vary much by depth and location, and the water temperature in January and March tended to rise from Incheon to Gimpo, with the average difference of 1.1 degrees during the same period. The salinity difference between Incheon and Gimpo sites was 3.3 psu deep and 5.4 psu deep. In particular, floodgates from July to September are found to be less than 10psu overall, which is considered to be a gas due to the effects of floods and the inflow of Gulpo Stream. D.O. is located in some areas due to summer rains. The hypoxic layer has been identified.Analysis of seasonal data shows that water temperature and DO are strongly correlated in autumn. It was found that the water temperature and salt levels in the fall showed a weak correlation.

Analysis of Relationship between Spatial Distribution of Land Use and Water Quality in Agricultural Reservoirs (토지이용의 공간적 분포와 농업용저수지 수질 간의 상관분석)

  • Lee, Sae-Bom;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Jang, Jae-Ho;Jeon, Ji-Hong
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.481-488
    • /
    • 2007
  • This study covers the relationship between land use and water quality items. The kinds of land used in this study were almost agricultural areas with paddy fields and mountains. We set up zones at intervals of 200 m along 48 watersheds all over the country. The analysis showed high relationship between the water quality and the land use specially on the areas in the 400 m radius from the stream so that the areas needed to have strict managements. In the cases of residential area and upland, the positive correlation had a tendency to be lower when they were farther away from the stream. It depended on the increase of rainfall during July and August which affected on the water quality of reservoirs. The correlation analysis of paddy fields resulted in negative relationship, which indicated that paddy fields did not have negative effect on the quality of the stream. Through adequate irrigation and Management, paddy fields may be led to have positive effect on the quality of the reservoirs. In the case of forest, it also resulted in negative correlation so it was concerned as a positive factor which helped to improve water quality. Furthermore more than 00% of the land used in this study is comprised of forest so that it would have a positive effect on the reservoir management.

Effect of Balloonflower and Potato Cultivation on Runoff and NPS Pollution Loads (도라지와 감자 재배가 유출과 비점오염부하에 미치는 영향)

  • Shin, Jae Young;Shin, Min Hwan;Choi, Yong Hoon;Kang, Hyun Woo;Won, Chul Hee;Hwang, Moon Young;Yang, Hee Jung;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.89-99
    • /
    • 2012
  • An upland monitoring was conducted for about 4 years with respect to the water and quality of rainfall-runoff. The objective was to characterize of runoff and nonpoint source (NPS) pollution from a sandy field with 4.5 % in slope under balloonflower (2008-2010) and potato (2011) cultivation. Balloonflower was cultivated without any surface cover but potato was grown under plastic mulching. Runoff rate, EMCs and NPS pollution loads were estimated. The first flush effect was evaluated, and the correlation coefficient among the selected water quality indices were analyzed. Average rainfall size was higher by 2.3 mm when balloonflower was cultivated but average runoff rate was higher by 0.02 when potato was cultivated due to the plastic mulching. EMCs monitored from balloonflower field were higher than potato field except SS and TN, but all NPS pollution loads of potato field were 2.1~22.9 times greater than balloonflower field because of larger runoff volume. As a result of first flush effects, balloonflower and potato field were more influenced by increasing of accumulated rainfall and rainfall intensity rather than first flush. In the result of correlation analysis, there were no evident correlations between runoff and water quality indices. However, there were obvious correlations between SS and the other indices except TN. As a result of this study, it was thought that perennial balloonflower crop could help reduce runoff and NPS pollution loads but annual crop with plastic mulching increase them.

Effect of Maltodextrin Concentration and Drying Temperature on Quality Properties of Purple Sweet Potato Flour

  • Ahmed, Maruf;Akter, Mst. Sorifa;Chin, Koo-Bok;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1487-1494
    • /
    • 2009
  • The effects of drying temperature (55, 60, and $65^{\circ}C$) and addition levels of maltodextrin (MD) (10, 20, and 30%) on the physicochemical properties and nutritional quality of purple sweet potato flour were investigated. MD-added flours had higher $L^*$ values, water soluble index, total phenolic, and anthocyanin contents than untreated flour. However, $a^*$, $b^*$ values, water absorption index, and swelling capacity were dependent on the drying temperature and MD concentration. On the other hand, untreated flour had a higher ascorbic acid content compared to the MD-treated flour. Ascorbic acid contents decreased, whereas anthocyanin content was not significantly different, with increasing drying temperatures. MD was positively correlated with phenolic content, anthocyanin, hue angle, and water soluble index. However, there was no correlation between quality parameters and glass transition temperature. The best quality product was obtained when samples were pretreated with MD before drying, regardless of drying temperature.

CALIBRATION AND VALIDATION OF THE HSPF MODEL ON AN URBANIZING WATERSHED IN VIRGINIA, USA

  • Im, Sang-Jun;Brannan, Kevin-M.;Mostaghimi, Saied
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.141-154
    • /
    • 2003
  • Nonpoint source pollutants from agriculture are identified as one of the main causes of water quality degradation in the United States. The Hydrological Simulation Program-Fortran (HSPF) was used to simulate runoff, nitrogen, and sediment loads from an urbanizing watershed; the Polecat Creek watershed located in Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed hydrologic and water quality data collected at the watershed outlet and at several sub-watershed outlets. A comparison of measured and simulated monthly runoff at the outlet of the watershed resulted in a correlation coefficient of 0.94 for the calibration period and 0.74 for the validation period. The annual observed and simulated sediment loads for the calibration period were 220.9 kg/ha and 201.5 kg/ha, respectively. The differences for annual nitrate nitrogen ($NO_3$) loads between the observed and simulated values at the outlet of the watershed were 5.1% and 42.1% for the calibration and validation periods, respectively. The corresponding values for total Kjeldahl nitrogen (TKN) were 60.9% and 40.7%, respectively. Based on the simulation results, the calibrated HSPF input parameters were considered to adequately represent the Polecat Creek watershed.

  • PDF

A study on applying random forest and gradient boosting algorithm for Chl-a prediction of Daecheong lake (대청호 Chl-a 예측을 위한 random forest와 gradient boosting 알고리즘 적용 연구)

  • Lee, Sang-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.507-516
    • /
    • 2021
  • In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.

Comparison of Chlorophyll-a Prediction and Analysis of Influential Factors in Yeongsan River Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 이용한 영산강의 Chlorophyll-a 예측 성능 비교 및 변화 요인 분석)

  • Sun-Hee, Shim;Yu-Heun, Kim;Hye Won, Lee;Min, Kim;Jung Hyun, Choi
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.292-305
    • /
    • 2022
  • The Yeongsan River, one of the four largest rivers in South Korea, has been facing difficulties with water quality management with respect to algal bloom. The algal bloom menace has become bigger, especially after the construction of two weirs in the mainstream of the Yeongsan River. Therefore, the prediction and factor analysis of Chlorophyll-a (Chl-a) concentration is needed for effective water quality management. In this study, Chl-a prediction model was developed, and the performance evaluated using machine and deep learning methods, such as Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Moreover, the correlation analysis and the feature importance results were compared to identify the major factors affecting the concentration of Chl-a. All models showed high prediction performance with an R2 value of 0.9 or higher. In particular, XGBoost showed the highest prediction accuracy of 0.95 in the test data.The results of feature importance suggested that Ammonia (NH3-N) and Phosphate (PO4-P) were common major factors for the three models to manage Chl-a concentration. From the results, it was confirmed that three machine learning methods, DNN, RF, and XGBoost are powerful methods for predicting water quality parameters. Also, the comparison between feature importance and correlation analysis would present a more accurate assessment of the important major factors.

Correlation between Paldang Reservoir Discharge and Causes of Algal Blooming (팔당호 방류량과 조류발생요인들의 상관성)

  • Yoo, Hosik;Lee, Byonghi;Rhee, Seung-Whee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2013
  • Main causes of algal bloom was studied in Paldang reservoir. Statistical approach was tried using meteorological and water quality data. Algae alert system showed that more than ten days were counted in a year, once it happened in Paldang reservoir. Alert dates increased in recent 5 years. Correlation coefficients between chlorophyll-a and other indexes did not showed strong relations resulting in coefficients less than 0.4. Among them, sunshine duration, BOD, and flow rate were appeared relatively main causes of algal blooming. Sunshine duration and BOD showed positive relation while flow rate did negative one, which is resonable for photosynthetic microorganisms. Water temperature and total phosphorus, which were presumed probable main causes before study, resulted in low correlation coefficients. Correlation coefficients between discharge flow and rainfall, water temperature showed positive relation due to seasonal effect.