This study outlines two viewpoints the classification of phone likely unit (PLU) which is the foundation of korean large vocabulary speech recognition, and the effectiveness of Chiljongseong (7 Final Consonants) and Paljogseong (8 Final Consonants) of the korean language. The phone likely classifies the phoneme phonetically according to the location of and method of articulation, and about 50 phone-likely units are utilized in korean speech recognition. In this study auditory phonetical knowledge was applied to the classification of phone likely unit to present 45 phone likely unit. The vowels 'ㅔ, ㅐ'were classified as phone-likely of (ee) ; 'ㅒ, ㅖ' as [ye] ; and 'ㅚ, ㅙ, ㅞ' as [we]. Secondly, the Chiljongseong System of the draft for unified spelling system which is currently in use and the Paljongseonggajokyong of Korean script haerye were illustrated. The question on whether the phonetic value on 'ㄷ' and 'ㅅ' among the phonemes used in the final consonant of the korean fan guage is the same has been argued in the academic world for a long time. In this study, the transition stages of Korean consonants were investigated, and Ciljonseeng and Paljongseonggajokyong were utilized in speech recognition, and its effectiveness was verified. The experiment was divided into isolated word recognition and speech recognition, and in order to conduct the experiment PBW452 was used to test the isolated word recognition. The experiment was conducted on about 50 men and women - divided into 5 groups - and they vocalized 50 words each. As for the continuous speech recognition experiment to be utilized in the materialized stock exchange system, the sentence corpus of 71 stock exchange sentences and speech corpus vocalizing the sentences were collected and used 5 men and women each vocalized a sentence twice. As the result of the experiment, when the Paljongseonggajokyong was used as the consonant, the recognition performance elevated by an average of about 1.45% : and when phone likely unit with Paljongseonggajokyong and auditory phonetic applied simultaneously, was applied, the rate of recognition increased by an average of 1.5% to 2.02%. In the continuous speech recognition experiment, the recognition performance elevated by an average of about 1% to 2% than when the existing 49 or 56 phone likely units were utilized.
The current study investigated CVCC syllables in spontaneous American English speech to find out whether such syllables are produced as phonological units with a string of segments, showing a hierarchical structure. Transcribed data from the Buckeye Speech Corpus was used for the analysis in this study. The result of the current study showed that the constituents within a CVCC syllable as a phonological unit may have phonetic variations (namely, the final coda may undergo deletion). First, voiceless alveolar stops were the most frequently deleted when they occurred as the second final coda consonants of a CVCC syllable; this deletion may be an intermediate process on the way from the abstract form CVCC (with the rime VCC) to the actual pronunciation CVC (with the rime VC), a production strategy employed by some individual speakers. Second, in the internal structure of the rime, the proportion of deletion of the final coda consonant depended on the frequency of the word rather than on the position of postvocalic consonants on the sonority hierarchy. Finally, the segment following the consonant cluster proved to have an effect on the reduction of that cluster; more precisely, the following contrast was observed between obstruents and non-obstruents, reflecting the effect of sonority: when the segment following the consonant cluster was an obstruent, the proportion of deletion of the final coda consonant was increased. Among these results, the effect of word frequency played a critical role for promoting the deletion of the second coda consonant for clusters in CVCC syllables in spontaneous speech. The current study implies that the structure of syllables as phonological units can vary depending on individual speakers' lexical representation.
This paper aims to analyze pronunciation variations of loanwords produced by Korean and improve the performance of pronunciation modeling of loanwords in Korean by using syllable-based segmentation and phonological knowledge. The loanword text corpus used for our experiment consists of 14.5k words extracted from the frequently used words in set-top box, music, and point-of-interest (POI) domains. At first, pronunciations of loanwords in Korean are obtained by manual transcriptions, which are used as target pronunciations. The target pronunciations are compared with the standard pronunciation using confusion matrices for analysis of pronunciation variation patterns of loanwords. Based on the confusion matrices, three salient pronunciation variations of loanwords are identified such as tensification of fricative [s] and derounding of rounded vowel [ɥi] and [$w{\varepsilon}$]. In addition, a syllable-based segmentation method considering phonological knowledge is proposed for loanword pronunciation modeling. Performance of the baseline and the proposed method is measured using phone error rate (PER)/word error rate (WER) and F-score at various context spans. Experimental results show that the proposed method outperforms the baseline. We also observe that performance degrades when training and test sets come from different domains, which implies that loanword pronunciations are influenced by data domains. It is noteworthy that pronunciation modeling for loanwords is enhanced by reflecting phonological knowledge. The loanword pronunciation modeling in Korean proposed in this paper can be used for automatic speech recognition of application interface such as navigation systems and set-top boxes and for computer-assisted pronunciation training for Korean learners of English.
The purpose of this study is to determine how the Korean diphthong /jo/ shows phonetic variation in various linguistic environments. The pronunciation of /jo/ is discussed, focusing on the relationship between phonetic variation and the distribution range of vowels. The location in a word (monosyllable, word-initial, word-medial, word-final) and word class (content word, function word) were analyzed using the speech of 10 female speakers of the Seoul Corpus. As a result of determining the frequency of appearance of /jo/ in each environment, the pronunciation type and word class were affected by the location in a word. Frequent phonetic reduction was observed in the function word /jo/ in the acoustic analysis. The word class did not change the average phonetic values of /jo/, but changed the distribution of individual tokens. These results indicate that the linguistic environment affects the phonetic distribution of vowels.
Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.
This study examined the utility of the acoustic features of vowels as cues for the place of articulation of Korean nasal consonants. In the acoustic analysis, spectral and temporal parameters were measured at the 25%, 50%, and 75% time points in the vowels neighboring nasal consonants in samples extracted from a spontaneous Korean speech corpus. Using these measurements, linear discriminant analyses were performed and classification accuracies for the nasal place of articulation were estimated. The analyses were applied separately for vowels following and preceding a nasal consonant to compare the effects of progressive and regressive coarticulation in terms of place of articulation. The classification accuracies ranged between approximately 50% and 60%, implying that acoustic measurements of vowel intervals alone are not sufficient to predict or classify the place of articulation of adjacent nasal consonants. However, given that these results were obtained for measurements at the temporal midpoint of vowels, where they are expected to be the least influenced by coarticulation, the present results also suggest the potential of utilizing acoustic measurements of vowels to improve the recognition accuracy of nasal place. Moreover, the classification accuracy for nasal place was higher for vowels preceding the nasal sounds, suggesting the possibility of higher anticipatory coarticulation reflecting the nasal place.
Kim, Yeji;Lee, Song-min;Choi, Min-kyung;Jung, Sang-min;Sung, Jee Eun;Lee, Youngmee
Phonetics and Speech Sciences
/
v.14
no.1
/
pp.37-47
/
2022
The purpose of the this study is to observe the effects of healthy adults' age on temporal features of speech and identify which could differentiate older and young adults. We examined speech rates(i.e., overall speaking rate, articulation rate), occurrence of pause, and duration of pause per utterance by utilizing the National Institute of Korean Language's open corpus. We selected a total of 30 healthy adults (10 young, 10 middle-aged, and 10 older adults) in this study. There were significant differences among the groups in the overall speaking rate, articulation rate, total occurrence of pause, the occurrence of pause between syntactic words, total duration of pause, and duration of pause between syntactic words. The older and middle-aged adults showed slower speech rates and longer and more frequent pause than young adults. But there were no significant differences among the three groups in terms of pause within syntactic word. The overall speaking rate significantly differentiated older adults from young adults. These findings suggested that the effect of speakers' age was reflected in gradual changes in the temporal features of their speech.
Automatic speech recognition (ASR) has been revolutionized with deep learning-based approaches, among which self-supervised learning methods have proven to be particularly effective. In this study, we aim to enhance the performance of OpenAI's Whisper model, a multilingual ASR system on the Korean language. Whisper was pretrained on a large corpus (around 680,000 hours) of web speech data and has demonstrated strong recognition performance for major languages. However, it faces challenges in recognizing languages such as Korean, which is not major language while training. We address this issue by fine-tuning the Whisper model with an additional dataset comprising about 1,000 hours of Korean speech. We also compare its performance against a Transformer model that was trained from scratch using the same dataset. Our results indicate that fine-tuning the Whisper model significantly improved its Korean speech recognition capabilities in terms of character error rate (CER). Specifically, the performance improved with increasing model size. However, the Whisper model's performance on English deteriorated post fine-tuning, emphasizing the need for further research to develop robust multilingual models. Our study demonstrates the potential of utilizing a fine-tuned Whisper model for Korean ASR applications. Future work will focus on multilingual recognition and optimization for real-time inference.
The purpose of this research was to find out the relation between Korean learners' English proficiency and the ratio of the length of the stressed vowel in a monosyllabic noun to that of the unstressed vowel in an article of the noun phrases (e.g., "a cup", "the bus", etcs.). Generally, the vowels in monosyllabic content words are phonetically more prominent than the ones in monosyllabic function words as the former have phrasal stress, making the vowels in content words longer in length, higher in pitch, and louder in amplitude. This study, based on the speech samples from Korean-Spoken English Corpus (K-SEC) and Rated Korean-Spoken English Corpus (Rated K-SEC), examined 879 English noun phrases, which are composed of an article and a monosyllabic noun, from sentences which are rated on 4 levels of proficiency. The lengths of the vowels in these 879 target NPs were measured and the ratio of the vowel lengths in nouns to those in articles was calculated. It turned out that the higher the proficiency level, the greater the mean ratio of the vowels in nouns to the vowels in articles, confirming the research's hypothesis. This research thus concluded that for the Korean English learners, the higher the English proficiency level, the better they could produce the stressed and unstressed vowels with more conspicuous length differences between them.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.