We compare the relation among the annual distribution of sunspots: coronal mass ejections (CMEs) and geomagnetic storms and North-South asymmetry during solar cycle 23. For this purpose, we calculate correlation coefficients between (i) annual distribution and N-S asymmetry of CMEs - sunspots (ii) distribution of CMEs - occurrence number of geomagnetic storms (iii) distribution of sunspots - occurrence number of geomagnetic storms. We find that (i) the annual distribution of total CMEs has good correlation with distribution of annual average of sunspots but poor correlation with N-S asymmetry of sunspots, N-S asymmetry of CMEs has good correlation with N-S asymmetry of sunspots: (ii) total and N-S asymmetry of CMEs have poor correlation with occurrence number of geomagnetic storms, it's, however, well correlated with the classified groups of CMEs (Ap, Dst and an indices vs. fast CMEs($\upsilon$ > $1000kms^{-1}$), Dst index vs. Halo CMEs), and (iii) sunspot numbers and area are correlated with occurrence number of geomagnetic storms. We conclude that annual distribution of CMEs and sunspots have well correlated with geomagnetic storms, N-S asymmetry of CMEs and sunspots have poor correlated with the geomagnetic storms.
KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
Journal of The Korean Astronomical Society
/
v.37
no.4
/
pp.171-177
/
2004
X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.
Kim, Il-Hoon;Sung, Suk-Kyung;Lee, Kyoung-Sun;Lee, Chung-Woo;Moon, Yong-Jae;Kim, Kap-Sung
The Bulletin of The Korean Astronomical Society
/
v.35
no.1
/
pp.29.2-29.2
/
2010
The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode provide us with excellent imaging spectroscopic data with very good spatial and spectral resolutions, which can be used for detecting Doppler flows in transition region and coronal lines as well as diagnosing plasma properties such as temperature, density, and non-thermal velocity. In this study we have made an EUV-imaging spectroscopic study of the source region of a partial halo coronal mass ejection (CME) that occurred on 2007 July 9 in NOAA 10961. Dopplergrams are obtained before and after the CME eruption using 12 EIS spectral lines (Log T= 4.9~7.2). Major results are summarized as follows. First, it is noted that either red shifts disappeared or blue shifts newly appeared for all spectral lines lower than Log T =6.0. Second, there were significant intensity increases for all wavelengths. Third, there were no significant variations in non-thermal motions for all wavelengths. We found one interesting bright point that newly appeared after the CME eruption. We discuss the implication on the results in terms of the CME eruption.
A Forbush decrease(FD) is a depression of cosmic ray intensity observed by ground-based neutron monitors(NMs). The cosmic ray intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection(ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of NM station. However, sometimes NMs of the almost same rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on cosmic ray intensity depression rate of FD event recorded at different NMs due to different ICME propagation direction as an additional parameter in the model explaining the cosmic ray modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We confirm that the asymmetric cosmic ray decreasing modulations of FD events are determined by the propagation directions of the associated ICMEs.
Park, Jinhye;Moon, Yong-Jae;Lee, Harim;Kahler, S.W.
The Bulletin of The Korean Astronomical Society
/
v.42
no.2
/
pp.82.3-83
/
2017
We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multi-spacecraft is similar to that on 2D CME speed. 2) There is a positive correlation between SEP peak flux and 3D angular width from multi-spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. 3) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 4) The multiple regression method between SEP peak fluxes and CME parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.
Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.
Major solar eruptive events, consisting of both a large flare and a near simultaneous fast coronal mass ejection (CME), are the most powerful explosions in the solar system, releasing $10^{32}-10^{33}$ ergs in ${\sim}10^{3-4}\;s$. They are also the most powerful and energetic particle accelerators, producing ions up to tens of GeV and electrons up to hundreds of MeV. For flares, the accelerated particles often contain up to ~50% of the total energy released, a remarkable efficiency that indicates the particle acceleration is intimately related to the energy release process. Similar transient energy release/particle acceleration processes appear to occur elsewhere in the universe, in stellar flares, magnetars, etc. Escaping solar energetic particles (SEPs) appear to be accelerated by the shock wave driven by the fast CME at altitudes of ~1 40 $R_s$, with an efficiency of ~10%, about what is required for supernova shock waves to produce galactic cosmic rays. Thus, large solar eruptive events are our most accessible laboratory for understanding the fundamental physics of transient energy release and particle acceleration in cosmic magnetized plasmas. They also produce the most extreme space weather - the escaping SEPs are a major radiation hazard for spacecraft and humans in space, the intense flare photon emissions disrupt GPS and communications on the Earth, while the fast CME restructures the interplanetary medium with severe effects on the magnetospheres and atmospheres of the Earth and other planets. Here I review present observations of large solar eruptive events, and future space and ground-based measurements needed to understand the fundamental processes involved.
The sudden decrease of galactic cosmic ray (GCR) intensity observed by ground neutron monitor (NM) is called a Forbush decrease (FD) event. The intensity time profile of FD event looks like the geomagnetic storm visualized by geomagnetic storm index Dst. Oh et al. [2008] and Oh and Yi [2009] classified the FD events into two kinds by criteria of the overlapping simultaneity of main phase in universal time (UT). The FD event is defined simultaneous if the main phase parts observed by the stations distributed evenly around the Earth are overlapped in UT and non-simultaneous if ones are overlapped in each station's local time (LT). They suggested the occurrence mechanisms of two kind FD events related to the interplanetary magnetic structures such as the interplanetary shock (IP shock) and magnetic cloud. According to their model, the simultaneity of FD depends on the strength and propagation direction of interactive magnetic structures overtaking the Earth. Now the STEREO mission can visualize the emergence and propagation direction of the coronal mass ejection (CME) in 3-dimension in the heliosphere. Thus, it is possible to test the suggested mechanisms causing two different types of FD events. One simultaneous FD observed on February 17, 2011 may be caused by a CME heading directly toward the Earth observed on February 15, 2011 by the STEREO mission. The simultaneity of FD event is proved to be a useful analysis tool in figuring out the geo-effectiveness of solar events such as interplanetary CMEs and IP shocks.
MOON Y.-J.;CHAE JONGCHUL;CHOE G. S.;WANG HAIMIN;PARK Y. D.;CHENG C. Z.
Journal of The Korean Astronomical Society
/
v.37
no.1
/
pp.41-53
/
2004
It has been a big mystery what drives filament eruptions and flares. We have studied in detail an X1.8 flare and its associated filament eruption that occurred in NOAA Active Region 9236 on November 24,2000. For this work we have analyzed high temporal (about 1 minute) and spatial (about 1 arcsec) resolution images taken by Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory, Hoc centerline and blue wing ($-0.6{\AA}$) images from Big Bear Solar Observatory, and 1600 ${\AA}$ UV images by the Transition Region and Corona Explorer (TRACE). We have found that there were several transient brightenings seen in H$\alpha$ and, more noticeably in TRACE 1600 ${\AA}$ images around the preflare phase. A closer look at the UV brightenings in 1600 ${\AA}$ images reveals that they took place near one end of the erupting filament, and are a kind of jets supplying mass into the transient loops seen in 1600 ${\AA}$. These brightenings were also associated with canceling magnetic features (CMFs) as seen in the MDI magnetograms. The flux variations of these CMFs suggest that the flux cancellation may have been driven by the emergence of the new flux. For this event, we have estimated the ejection speeds of the filament ranging from 10 to 160 km $s^{-1}$ for the first twenty minutes. It is noted that the initiation of the filament eruption (as defined by the rise speed less than 20 km $s^{-1}$) coincided with the preflare activity characterized by UV brightenings and CMFs. The speed of the associated LASCO CME can be well extrapolated from the observed filament speed and its direction is consistent with those of the disturbed UV loops associated with the preflare activity. Supposing the H$\alpha$/UV transient brightenings and the canceling magnetic features are due to magnetic reconnect ion in the low atmosphere, our results may be strong observational evidence supporting that the initiation of the filament eruption and the preflare phase of the associated flare may be physically related to low-atmosphere magnetic reconnection.
In this paper, we review recent studies on the magnetic helicity changes of solar active regions by photospheric horizontal motions. Recently, Chae(200l) developed a methodology to determine the magnetic helicity change rate via photospheric horizontal motions. We have applied this methodology to four cases: (1) NOAA AR 8100 which has a series of homologous X-ray flares, (2) three active regions which have four eruptive major X-ray flares, (3) NOAA AR 9236 which has three eruptive X-class flares, and (4) NOAA AR 8668 in which a large filament was under formation. As a result, we have found several interesting results. First, the rate of magnetic helicity injection strongly depends on an active region and its evolution. Its mean rate ranges from 4 to $17 {\times} 10^{40}\;Mx^2\;h^{-1}$. Especially when the homologous flares occurred and when the filament was formed, significant rates of magnetic helicity were continuously deposited in the corona via photospheric shear flows. Second, there is a strong positive correlation between the magnetic helicity accumulated during the flaring time interval of the homologous flares in AR 8100 and the GOES X-ray flux integrated over the flaring time. This indicates that the occurrence of a series of homologous flares is physically related to the accumulation of magnetic helicity in the corona by photospheric shearing motions. Third, impulsive helicity variations took place near the flaring times of some strong flares. These impulsive variations whose time scales are less than one hour are attributed to localized velocity kernels around the polarity inversion line. Fourth, considering the filament eruption associated with an X1.8 flare started about 10 minutes before the impulsive variation of the helicity change rate, we suggest that the impulsive helicity variation is not a cause of the eruptive solar flare but its result. Finally, we discuss the physical implications on these results and our future plans.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.