DOI QR코드

DOI QR Code

LOW ATMOSPHERE RECONNECTIONS ASSOCIATED WITH AN ERUPTIVE SOLAR FLARE

  • MOON Y.-J. (Korea Astronomy Observatory, Big Bear Solar Observatory, NJIT) ;
  • CHAE JONGCHUL (Astronomy Program, School of Earth and Environmental Sciences, Seoul National University) ;
  • CHOE G. S. (Plasma Physics Laboratory, Princeton University) ;
  • WANG HAIMIN (Big Bear Solar Observatory, NJIT) ;
  • PARK Y. D. (Korea Astronomy Observatory, Big Bear Solar Observatory, NJIT) ;
  • CHENG C. Z. (Plasma Physics Laboratory, Princeton University)
  • Published : 2004.03.01

Abstract

It has been a big mystery what drives filament eruptions and flares. We have studied in detail an X1.8 flare and its associated filament eruption that occurred in NOAA Active Region 9236 on November 24,2000. For this work we have analyzed high temporal (about 1 minute) and spatial (about 1 arcsec) resolution images taken by Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory, Hoc centerline and blue wing ($-0.6{\AA}$) images from Big Bear Solar Observatory, and 1600 ${\AA}$ UV images by the Transition Region and Corona Explorer (TRACE). We have found that there were several transient brightenings seen in H$\alpha$ and, more noticeably in TRACE 1600 ${\AA}$ images around the preflare phase. A closer look at the UV brightenings in 1600 ${\AA}$ images reveals that they took place near one end of the erupting filament, and are a kind of jets supplying mass into the transient loops seen in 1600 ${\AA}$. These brightenings were also associated with canceling magnetic features (CMFs) as seen in the MDI magnetograms. The flux variations of these CMFs suggest that the flux cancellation may have been driven by the emergence of the new flux. For this event, we have estimated the ejection speeds of the filament ranging from 10 to 160 km $s^{-1}$ for the first twenty minutes. It is noted that the initiation of the filament eruption (as defined by the rise speed less than 20 km $s^{-1}$) coincided with the preflare activity characterized by UV brightenings and CMFs. The speed of the associated LASCO CME can be well extrapolated from the observed filament speed and its direction is consistent with those of the disturbed UV loops associated with the preflare activity. Supposing the H$\alpha$/UV transient brightenings and the canceling magnetic features are due to magnetic reconnect ion in the low atmosphere, our results may be strong observational evidence supporting that the initiation of the filament eruption and the preflare phase of the associated flare may be physically related to low-atmosphere magnetic reconnection.

Keywords

References

  1. Sol. Phys. v.162 The Large Angle Spectroscopic Coronagraph (LASCO) Brueckner,G.E.(et al.) https://doi.org/10.1007/BF00733434
  2. ApJ v.560 Observational Dtermination of the Rate of Magnetic Helicity Transport through the Solar Surface via the Horizaontal Motion of Field Line Footpoints Chae,J. https://doi.org/10.1086/324173
  3. ApJ v.584 The Fromation of a Prominence in NOAA Active Region 8668. Ⅱ. Trace Observations of Jets and Eruptions Associated with Canceling Magnetic Features Chae,J. https://doi.org/10.1086/345739
  4. ApJ v.497 Photospheric Magnetic Field Changes Associated with Transition Region Explosive Events Chae,J.;Wang,H.;Lee,C.;Goode,P.R;Schuehle,U. https://doi.org/10.1086/311289
  5. ApJ v.513 Extreme-Ultraviolet Jets and Halpha Surges in Solar Microflares Chae,J.;Qiu,J.;Wang,H.;Goode,P.R. https://doi.org/10.1086/311910
  6. Sol. Phys. v.195 High-Resolution H Observations of Proper Motion in NOAA 8668:Evidence for Filament Mass Injection by Chromospheric Reconnection Chae,J.;Denker,C.;Spirock,T.J.;Wang,H.;Goode,P.R. https://doi.org/10.1023/A:1005242832293
  7. ApJ v.560 The Formation of a Prominence in Active Region NOAA 8668. I. SOHO/MDI Observations of Magnetic Field Evolution Chae,J.;Wang,H.;Qiu,J.;Goode,P.R.;Strous,L.;Yun,H.S https://doi.org/10.1086/322491
  8. Sol. Phys. v.207 Flux Cancellation Rates and Converging Speeds of Canceling Magnetic Features Chae,J.;Moon,Y.J.;Wang,H.;Goode,P.R.;Yun,H.S. https://doi.org/10.1007/BF01326096
  9. ApJ v.338 Effects of toroidal forces in current loops embedded in a background plasma Chen,J. https://doi.org/10.1086/167211
  10. J. Geophys. Res. v.101 Theory of prominence eruption and propagation : Interplanetary consequences Chen,J. https://doi.org/10.1029/96JA02644
  11. Preflare Phenomena in Eruptive Flares Spring meeting 2001, abstract #SH22A-03 Colman,A.M.;Canfield,R.C.
  12. Sol. Phys. v.184 Synoptic Halpha Full-Disk Observations of the Sun from BigBear Solar Observatory- I. Instrumentation, Image Processing , Data Products, and First Results Denker,C.;Johannesson,A.;Marquette,W.;Goode,P.R.;Wang,H.;Zirin,H. https://doi.org/10.1023/A:1005047906097
  13. Sol. Phys. v.162 EIT: Extreme Ultraviolet Imaging Telescope for the SOHO Mission Delaboudiniere(et al.) https://doi.org/10.1007/BF00733432
  14. J. Geophys. Res. v.100 The inition of coronal mass ejections by newly emerging magnetic flux Feyman,J.;Martin,S.F. https://doi.org/10.1029/94JA02591
  15. J. Geophys. Res. v.95 Numerical simulation of a catastrophe model for coronal mass ejections Forbes,T.G. https://doi.org/10.1029/JA095iA08p11919
  16. J. Geophys. Res. v.105 A review on the genesis of coronal mass ejections Forbes,T.G. https://doi.org/10.1029/2000JA000005
  17. ApJ v.588 Rapid Acceleration of a Coronal Mass Ejection in the Low Corona and Implications for Propagation Gallagher,P.T.;Lawrence,G.R.;Dennis,B.R. https://doi.org/10.1086/375504
  18. Sol. Phys. v.187 The transition region and coronal explorer Handy,B.N.(et al.) https://doi.org/10.1023/A:1005166902804
  19. A & A v.365 Photospheric magnetic field changes associated with the activations of a quiescent filament Jiang,Y.;Wang,J.
  20. A & A v.367 Filament activity and photospheric magnetic evolution related to flares Jiang,Y.;Wang,J. https://doi.org/10.1051/0004-6361:20000551
  21. ApJ v.328 Filament eruptions and the impulsive phase of solar flares Kahler,S.W.;Moore,R.L.;Kane,S.R.;Zirin,H. https://doi.org/10.1086/166340
  22. ApJ v.547 A Rapid Change in Magnetic Connectivity Observed Before Filament Eruption and Its Associated Flare Kim,J.;Yun,H.S.;Lee,S.;Chae,J.;Goode,P.R.;Wang,H. https://doi.org/10.1086/318883
  23. Sol. Phys. v.121 The association of flares to cancelling magnetic features on the sun Livi,S.H.B.;Martin,S.F.;Wang,H.;Ai,G.
  24. NASA CP-2442 Recent observations of the formation of filaments, in Coronal and Prominence Plasmas Martin,S.F.;A.I.Poland(ed.)
  25. Dynamics of Quiescent Prominences v.117 Conditions for the formation of prominences as inferred from optical observations, in IAU Colloq. Martin,S.F.;V.Ruzdjak(ed.);E.Tandberg Hanssen(ed.)
  26. J. Phys. v.38 The cancellation of magnetic flux. Ⅱ-In a decaying active region Martin,S.F.;Livi,S.H.B.;Wang,J.
  27. Eruptive Solar Flares v.133 The Role of Cancelling Magnetic Fields in the Buildup to Erupting Filaments and Flares, in IAU Colloq. Martin,S.F.;Livi,S.H.B.;Z.Svestaka(ed.);B.V.Jackson(ed.);M.E.Machado(ed.)
  28. ApJ v.574 Flare Activity and Magnetic Helicity Injection by Photospheric Horizontal Motions Moon,Y.J.;Chae,J.;Choe,G.S.;Wang,H.;Park,Y.D.;Yun,H.S.;Goode,P.R. https://doi.org/10.1086/340975
  29. ApJ v.580 Impulsive Variations of the Magnetic Helicity Change Rate Associated with Eruptive Flares Moon,Y.J.;Chae,J.;Wang,H.;Choe,G.S.;Park,Y.D. https://doi.org/10.1086/343130
  30. JKAS v.36 Relationship Between CME Kinematics and Flare Strenght Moon,Y.J;Choe,G.S.;Wang,H.;Park,Y.D.;Cheng,C.Z.
  31. Adv. Space Res. v.32 no.10 Magnetic helicity change rate associated with three X-class eruptive flares Moon,Y.J;Choe,G.S.;Wang,H.;Park,Y.D. https://doi.org/10.1016/S0273-1177(03)90632-6
  32. ApJ v.552 Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections Moore,R.L.;Sterling,A.C.;Hudson,H.C.;Lemon,J.R. https://doi.org/10.1086/320559
  33. J. Geophys. Res. v.106 Eruption and acceleration of flare-associated coronal mass ejection loops in the low corona Neupert,W.M.;Thompson,B.J.;Gurman,J.B.;Plunkett,S.P. https://doi.org/10.1029/2000JA004012
  34. ApJ v.333 Precise propermotion measurement of solar granulation November,L.J.;Simon,G.W. https://doi.org/10.1029/2001GL013261
  35. Sol. Phys. v.215 On the kinematic evolution of flareassociated CMEs Shanmugaraju,A.;Moon,Y.J.;Dryer,M.;Umapathy,S. https://doi.org/10.1086/166758
  36. Sol. Phys. v.162 The Solar Oscillations Investigation - Michelson Doppler Imager Scherrer,P.H.(et al.) https://doi.org/10.1007/BF00733429
  37. Sol. Phys. v.94 Energy release in solar flares Sturrock,P.A.;Kaufman,P.;Moore,R.L.;Smith,D.F. https://doi.org/10.1007/BF00151322
  38. ApJ v.336 Statistical properties of solar granulation dervied from the SOUP instrument on Spacelab 2 Title,A.M.;Tarbell,T.D.;Topka,K.P.;Ferguson,S.H.;Shine,R.A.;The SOUP Team https://doi.org/10.1086/167026
  39. ApJ v.569 Core and large -scale structure of the 2000 November 24 X-Class flare and coronal mass ejection Wang,H.;Gallagher,P.;Yurchyshyn,V.;Yang,G.;Goode,P.R. https://doi.org/10.1086/167026
  40. Sol. Phys. v.143 The flare-associated magnetic changes in an active region. Ⅱ-Flux emergence and cancellation Wang,J.;Shi,Z. https://doi.org/10.1086/339349
  41. A & A v.316 Filament disturbance and associated magnetic changes in the filement environment Wang,J.;Shi,Z.;Martin,S.F. https://doi.org/10.1007/BF00619100
  42. ApJ v.510 Filament Eruptions near Emerging Bipoles Wang,Y.M;Sheeley,N.R. https://doi.org/10.1086/311815
  43. ApJ v.554 Filament Eruptions and Halo Coronal Mass Ejections Zhang,J.;Wang,J. https://doi.org/10.1086/311815
  44. ApJ v.548 Magnetic Flux Cancellation Associated with the Major Solar Event on 2000 July 14 Zhang,J.;Wang,J.;Deng,Y.;Wu,D. https://doi.org/10.1086/321343
  45. ApJ v.566 Are homologous flarecoronal mass ejection events triggered by moving magnetic features? Zhang,J.;Wang,J. https://doi.org/10.1086/318934
  46. Geophys. Res. Lett. v.28 Recurrent flare/ CME events from an emerging flux region Nitta,N.V.;Hudson,H.S. https://doi.org/10.1086/339660

Cited by

  1. The eruption of a small filament in the quiet Sun vol.318, pp.3-4, 2008, https://doi.org/10.1007/s10509-008-9908-2
  2. Preflare Eruption Triggered by a Tether‐cutting Process vol.683, pp.1, 2008, https://doi.org/10.1086/588717
  3. Magnetic Flux Changes and Cancellation Associated with X-Class and M-Class Flares vol.283, pp.2, 2013, https://doi.org/10.1007/s11207-013-0241-8
  4. Magnetic Field Extrapolations into the Corona: Success and Future Improvements vol.288, pp.2, 2013, https://doi.org/10.1007/s11207-013-0367-8
  5. Two-Step Reconnections in a C3.3 Flare and Its Preflare Activity Observed by Hinode XRT vol.59, pp.sp3, 2007, https://doi.org/10.1093/pasj/59.sp3.S831
  6. Physical State of the Photosphere at the Onset Phase of a Two-Ribbon Solar Flare vol.250, pp.2, 2008, https://doi.org/10.1007/s11207-008-9223-7
  7. AN INTERPRETATION OF THE POSSIBLE MECHANISMS OF TWO GROUND-LEVEL ENHANCEMENT EVENTS vol.758, pp.2, 2012, https://doi.org/10.1088/0004-637X/758/2/119
  8. Astrophysics in 2004 vol.117, pp.830, 2005, https://doi.org/10.1086/429117
  9. RHESSIANDTRACEOBSERVATIONS OF MULTIPLE FLARE ACTIVITY IN AR 10656 AND ASSOCIATED FILAMENT ERUPTION vol.771, pp.1, 2013, https://doi.org/10.1088/0004-637X/771/1/1
  10. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms vol.835, pp.2, 2017, https://doi.org/10.3847/1538-4357/835/2/156
  11. TWO TYPES OF EXTREME-ULTRAVIOLET BRIGHTENINGS IN AR 10926 OBSERVED BYHINODE/EIS vol.736, pp.1, 2011, https://doi.org/10.1088/0004-637X/736/1/15
  12. A Study of Flare‐associated X‐Ray Plasma Ejections. III. Kinematic Properties vol.635, pp.2, 2005, https://doi.org/10.1086/497625
  13. The kinematics of coronal mass ejections using multiscale methods vol.495, pp.1, 2009, https://doi.org/10.1051/0004-6361:200809811
  14. Relationship between eruptions of active-region filaments and associated flares and coronal mass ejections vol.414, pp.4, 2011, https://doi.org/10.1111/j.1365-2966.2011.18336.x
  15. The chromospheric line-of-sight velocity variations in a solar microflare vol.55, pp.3, 2015, https://doi.org/10.1016/j.asr.2014.07.036
  16. Reconnection in the lower solar atmosphere and coronal mass ejections vol.38, pp.8, 2006, https://doi.org/10.1016/j.asr.2005.03.089
  17. Multi-wavelength study of a high velocity event near a sunspot vol.450, pp.3, 2006, https://doi.org/10.1051/0004-6361:20054259
  18. Deep Flare Net (DeFN) Model for Solar Flare Prediction vol.858, pp.2, 2018, https://doi.org/10.3847/1538-4357/aab9a7