• Title/Summary/Keyword: Cornering Performance

Search Result 57, Processing Time 0.018 seconds

Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model (비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

IMPROVEMENT OF DRIFT RUNNING PERFORMANCE BY STEERING SYSTEM WHICH ADDS DIFFERENTIATION STEER ASSISTANCE

  • NOZAKI H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.615-623
    • /
    • 2005
  • In this research, an effective technique was examined to improve the drift running performance. Concretely, the driver model by which the counter steer was done was assumed to the model by which the vehicle body slip angle (and the vehicle body slip angle velocity) was feed back. Next, the effectiveness of the system which added the assist steer angle corresponding to the steering wheel angle velocity to a front wheel steer angle was clarified as a drift running performance improvement technique of the vehicle. As a result, because the phase advances when the differentiation steer assistance is added, it has been understood to be able to cover the delay of the counter steer when the drift running. Therefore, it has been understood that the drift control does considerably easily. Moreover, it has been understood that the differentiation steer assistance acts effectively at the drift cornering by which the drift angle is maintained in cornering and the severe lane change with a drift at a situation. That is, it was understood to be able to settle to the drift angle of the aim quickly at the time of the drift cornering because the delay of the control steer angle of the counter steer was improved. Moreover, it was understood for the transient overshoot of the vehicle tracks to be able to decrease, and to return to the state of stability quickly at the severe lane change.

Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation (Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석)

  • Tak, Tae-Oh;Joo, Jae-hoon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle (이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선)

  • Sohn, Jeonghyun;Park, Seongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

Dynamic Performance Analysis for 4WD/4WS Electric-driven Vehicles (4WD/4WS 전기 구동 차량의 동역학적 성능 해석)

  • 김준영;계경태;박건선;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 1996
  • In this paper, dynamic performance of 4WD/4WS Electric-driven vehicles is investigated. A coupled dynamic model is introduced for longitudinal, lateral and yawing motion of 4WD/4WS vehicles. Based on the coupled model, dynamic performance is analyzed for steady-state steering, acceleration steering and brake steering, respectively. These non steady-state cornering analysis is important for non-paved road maneuvering, trajectory projection for armored vehicle and future AVCS(Advanced Vehicle Control System) technology. Simulation results are obtained based on a simulink module for the introduced model.

  • PDF

Brake Steering Analysis of Electric-driven Special-purpose Vehicles (전기구동 특수차량의 제동 조향 성능 해석)

  • 박건선;김준영;허건수;장경영;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • In this paper, brake steering performance of electric-driven special-purpose vehicles is investigated. A 14 DOF model is developed considering nonlinear character- istics of the suspension and tire. Based on the model, cornering performance is analyzed for brake steering, acceleration steering and pivoting, respectively. Simulation results are obtained based on the developed SIMULINK module. This analysis about the non steady state cornering performance is particularly important for armored vehicles because the projected route of the vehicle at emergency should be predicted accuracy.

  • PDF

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

A Study on the DYC 4WS Control Method for Improving the Dynamic Characteristics of Vehicle (자동차의 주행성능 향상을 위한 DYC 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • The 4WS system is usually developed to improve the maneuverability at low speed and the straight line stability at high speed, but it is found to have the severe understeer characteristics at high speed. Therefore a 4WS vehicle requires to turn the steering wheel much more than a 2WS vehicle at high speeds even a driver goes through the same curved road. In this study, to enhance the cornering performance of the 4WS vehicle at high speed, a DYC 4WS system is proposed based on the nonlinear 4WS system and direct yaw moment control system. Especially the proposed DYC 4WS system is able to realize a zero side slip angle for vehicles and a cornering performance similar to the 2WS vehicle at high speed.

  • PDF

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

A Study on the Development of High Stiffness Body for Suspension Performance (서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.