• 제목/요약/키워드: Cornering

검색결과 133건 처리시간 0.024초

Understanding Automobile Roll Dynamics and Lateral Load Transfer Through Bond Graphs

  • ;Deam Karnopp
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.34-44
    • /
    • 1998
  • It is clear that when an automobile negotiates a curve the lateral acceleration causes an increase in tire normal load for the wheels on the outside of the curve and a decrease in load for the inside wheels. However, just how the details of the suspension linkages and the parameters of the springs and shock absorbers affect the dynamics of the load transfer os not easily understood. One even encounters the false idea that since it is the compression and extension of the main suspension springs spring body role which largely determines the changes in normal load, of roll could be reduced, the load transfer would also be reduced. Using free body diagrams, one can explain quite clearly how the load is transferred for steady state cornering, and, using complex multibody models of particular vehicles one can simulate in good fidelity how load transfer occurs dynamically. Here we adopt a middle ground by using the concept of roll center and using a series of half-car bond graph models to point out main effects. Since bond graph junction structures automatically and consistently constrain geometric and force variables simultaneously, they can be used to point out hidden assumptions of other simplified vehicle models.

  • PDF

조종안정성 평가를 위한 경로제어모델 (A Path Control Model to Evaluation Handling Characteristic of Vehicles)

  • 탁태오;최재민
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.139-147
    • /
    • 2001
  • In this study a path control scheme of simulation models of various vehicles to evaluate their handling characteristic is developed. Based on the forward target method, path deviation error is estimated and the required steering effort to reduce the error is computed by Ziegler-Nichols PID control rule. Velocity control model is also included in the proposed path control scheme to achieve the desired velocity. The path control scheme is implemented on a full vehicle model to perform ISO test procedures, such as steady state cornering, lane change, and sinusoidal input, etc. Through the simulations of ISO test procedures and comparison with actual tests, effectiveness and validity of the path control model is demonstrated.

  • PDF

자동차 휠 베어링 유닛의 장수명 설계 (A Design of an Automotive Wheel Bearing Unit for Long Life)

  • 윤기찬;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

코너 출구속도가 직선주로 주행 소요시간에 미치는 영향 (Effect of Corner Exit Speed on the Time to Go Down a Straight)

  • 장성국
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.141-146
    • /
    • 2003
  • This paper calculates the elapsed time to go down a straight as a function of the corner exit speed and considers air resistance, rolling resistance, and slope resistance to figure out the force for forward acceleration. In a car racing, the most critical comer in a course is the one before the longest straight. A driver can lose a quite amount of time by taking a bad line in a corner. Taking a bad line also causes poor comer exit speed which in turn costs more elapsed time to go down a straight. The results are not so dramatic as in the case of cornering but are showing why one should take the correct corner racing line to get the maximum exit speed. Also, for the case of drag race, the elapsed time to go 1/4 mile is calculated.

선회중 제동을 고려한 차량의 동특성 연구 (Analysis of Dynamic Characteristics of a Vehicle Undergoing Turning and Braking)

  • 강주석;윤중락;민현기;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.109-118
    • /
    • 1995
  • This paper presents a mathematical vehicle model to analyze the dynamic characteristics of a vehicle undergoing braking in a turn. Two kinds of field tests, braking in a steady state turn and braking in a J-turn are performed. Computer simulation results are compared with test results and the braking effect on a vehicle cornering behavior is examined. Also, sensitivity analysis is applied to determine the effect of design parameter changes on the response of vehicle dynamic system.

  • PDF

프레임 장성이 차량의 조종안정서에 미치는 영향 (Effects of Chassis Frame Stiffness on Vehicle Handling Characteristics)

  • 이병림
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.100-105
    • /
    • 2002
  • In order to investigate how the chassis frame stiffness including body structure affects vehicle handling characteristics, in this paper, objective test evaluations such as steady state circle maneuvering test and pulse input transient test are performed. The basic steer characteristics can be obtained from stability factor and 4 parameter method is used to evaluate vehicle handling characteristics between original vehicle and the other with reinforced chassis. The result shows that vehicle with reinforced chassis has advantages in handling characteristics.

엔진 경사 조건이 오일 공급 시스템에 미치는 영향 (The Effect of Engine Tilting Conditions on the Oil Supply System)

  • 전문수;김숭기;박병완
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.

Tilting Test Rig를 이용한 엔진 윤활 시스템 안정성 평가 (Safety Estimation of Engine Lubrication System using Tilting Test Rig)

  • 윤정의;전문수
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.1-6
    • /
    • 2002
  • Engine lubrication system is generally affected by vehicle driving conditions, which are composed of acceleration, braking deceleration and accelerating during cornering. The major reason is due to the oil pan system in which oil is directly influenced by inertia farce caused by vehicle driving conditions. Therefore, to confirm safety of engine lubrication system inertia farce effects are also considered in the developing state. For the purpose, we have carried the engine tilting tests using ourselves made test rig. Verifying the test results we also measured the inertia effects on the engine lubrication system using the circular tuning and slalom test with vehicle. Through the comparison study between two kinds of results we obtained that the engine tilting test rig was very useful to confirm the safety evaluation of engine lubrication system.

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.