• Title/Summary/Keyword: Corner Radius

Search Result 127, Processing Time 0.024 seconds

Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile (자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구)

  • 허영민;박동환;강성수
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die (십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계)

  • Hwang, S.H.;Choi, S.C.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Shin, Y.S.;Lee, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

A Study on the Mechanical Properties and Bending Formability Evaluation of the Spring Strip Materials (박판 스프링용 재료의 기계적특성과 굽힘가공성 평가 연구)

  • Won, S.T.;Lim, K.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.660-666
    • /
    • 2006
  • This study examined the mechanical properties and bending formability evaluation of spring strip materials(SK5 CSPH, STS 301 CSP-EH, C7701-H). The hardness test and tensile test were performed at room temperature($20^{\circ}C$) for mechanical properties. The U-bending test were carried out at various conditions of punch corner radius(Rp), ratio of punch comer radius/thickness(Rp/t) and ratio of clearance/thickness(Rp/t) and ratio of clearance/thickness(C/t) for bending formability evaluation.

Design of Stamping Die for Inner Reinforcement Panel of Automotive (자동차 내부 보강판 성형 금형 설계)

  • Ahn, Dong-Gyu;Song, Dong-Han;Noh, Gyung-Bo;Han, Gil-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2009
  • The objective of this paper is to design stamping die of inner reinforcement panel with DL 950 advanced high strength steel as stamping materials through numerical analyses and experiments. The stamping process was designed as bending dominant process consisting of 1 step of notching and 4 steps of bending processes. In order to obtain a proper design of the stamping die, various three-dimensional elasto-plastic finite element analyses were performed using a commercial code AUTOFORM V4.2. Design parameter of stamping die was chosen as the corner radius of the stamping die for each step. From the results of the FE analysis, feasible corner radii of the stamping die, which can minimize the deviation of corner angle of the stamped part from design data, and forming load for each part were estimated. Stamping experiments were carried out using the manufactured stamping die according to the proposed die design. The results of experiments were shown that the stamping die can successfully manufacture the inner reinforcement panel with DL 950 advanced high strength steel as base stamping material.

  • PDF

A Study on the Characteristics for the Blanking of Lead Frame with the Rectangular Shape Blanking (사각형 블랭킹을 통한 리드프레임의 블랭킹 특성에 관한 기초연구)

  • Lim, San-Heon;Suh, Eui-Kwon;Shim, Hyun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • An experiment is carried out to investigate the characteristics of blanking for copper alloy C194 (t=0.254mm), a kind of IC lead frame material. By varying clearance between die and punch, the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different corner radius is used to study the characteristics of blanking for straight side and corner region simultaneously. As the result, the ratios measured from the experiment of roll over, burnish, and fracture zone based on intial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of roll over and fracture is increased as the clearance increases. It has been found that larger clearance is required than that of straight region when the radius of corner is less than thickness of blank, in order to maintain same quality of shear profile at the corner region.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

A Studyon the Drawing of Rectangular Rod from Round Bar by using Rigid Plastic FEM and Neural Network (강소성 유한요소법과 신경망을 이용한 직사각재 인발공정에 관한 연구)

  • Kim, Y.C.;Choi, Y.;Kim, B.M.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.331-339
    • /
    • 1999
  • In this study, to analyze the shaped drawing process from round bar, the practical conical die with considering die radius and bearing was defined by a mathematical expression, and also a simple technique for initial mesh generation to the shaped drawing process was proposed. The drawing of rectangular section from round bar, one of the shaped drawing process, has been simulated by using non-steady state 3D rigid plastic finite element method in order to evaluate the influence of semi-die angle and reduction in area to corner filling. Other process variables such as friction constant, rectangular ratio, die radius and bearing length were fixed during the simulation. An artificial neural network has been introduced to obtain the optimal process conditions which gave rise to a fast simulation.

  • PDF

Experimental Study on the Conventional Spinnability of Steel Sheets (강판재의 보통 스피닝에 대한 성형성 연구)

  • Lee H. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.764-771
    • /
    • 2005
  • This study is related with the development of CNC spinning machine and the axisymmetric conventional spinning such as drum type and conical type steel shells. The CNC spinning machine is constructed with heavy duty frame and the hydraulic servo system is applied in order to give the exactness of motion control. The experiment has been carried out considering feeding velocity, mandrel shape, and the corner radius of mandrel and forming rollers. As a result of experiment, the limiting spinning ratio and thickness strain distribution are obtained and it can be seen that the spinnability is dominant to the feeding velocity and corner radius of forming roller. This research can contribute to the development of axisymmetric mechanical part which is applicable to automotive and aerospace industry.