• 제목/요약/키워드: Coriolis Force

검색결과 132건 처리시간 0.019초

회전하는 정사각 단면 U자형 곡관 내부의 유동 발달에 관한 수치적 연구 (I) - 층류 유동 (A Numerical Study on the Flow Development around a Rotating Square-Sectioned U-Bend (I) - Laminar Flow -)

  • 이공희;백제현
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.159-169
    • /
    • 2002
  • The present study investigates in detail the combined effects of the Coriolis and centrifugal farce on the development of laminar flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a rotating curved region, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal farce due to the curvature of U-bend. When the values of Rossby number and curvature ratio are large, the flow field in a rotating U-bend can be represented by two dimensionless parameters ; the Dean number K$\_$LC/=Re/√λ and a body ratio F=λ/Po. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards, the directions of the two secondary flows are the same. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct with a larger f7c. On the other hand, in case of negative rotation, where two farces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces.

Model Parametrization on the Mixing Behavior of Coastal Discharges

  • Kim, Jong-Kyu
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.15-21
    • /
    • 2003
  • A common feature in the three-dimensional numerical model experiments of coastal discharge with simplified model and idealized external forcings is investigated. The velocity fields due to the buoyancy and flaw flux, are spreaded radiately and the surface velocites are much greater than the homegeneous discharges. The coastal dischargd due to the Coriolis force and flaw flux are shaped a anticyclical gyre (clockwise) and determined the scale of the gyre in the coastal zone, respectively. The bottom topography restricts a outward extention of the coastal fronts and it accelerates a southward flow.

  • PDF

전향력에 의한 현상을 효과적으로 교육시킬 수 있는 실험 장치의 개발 (Development of Experimental Apparatus to Efficiently Educate the Phenomena by Coriolis Force)

  • 김은주;이상법;윤일희;이효녕
    • 한국지구과학회지
    • /
    • 제30권6호
    • /
    • pp.787-798
    • /
    • 2009
  • 지구과학 분야에서 대기와 해수의 운동을 이해하는 데 필수적인 개념인 전향력의 이해를 돕고자 전향력 실험장치를 개발하였다. 기존의 교과서에 제시된 전향력 실험 장치는 구슬을 내려 보내는 굴림대가 회전원판과 함께 회전하지 않으므로 구슬의 궤적을 이용하여 지구 위에서 전향력에 의해서 일어나는 대기나 해수의 운동을 바르게 설명할 수 없었다. 이러한 문제점을 개선하여 굴림대(빗면)를 원판에 부착하여 원판과 함께 회전하면서 구슬을 보낼 수 있는 새로운 실험 장치를 개발하였다. 개발한 장치와 기존의 장치를 사용하여 전향력 실험을 각각 실시하여 교과서의 실험 장치와 개발한 실험 장치의 특성을 비교하였다. 그 결과 교과서의 실험 장치는 구슬이 원판에 부딪히는 순간에 운동이 매끄럽지 못하여 구슬의 궤적을 분석하는 데 어려움이 있었던 반면에 개선된 실험 장치는 구슬의 궤적을 분석하기 쉬웠으며, 구슬의 속도를 다르게 할 수도 있어서 구슬의 속도가 다를 때 궤적을 서로 비교하는 것이 용이하였다.

유출홀이 설치된 회전하는 정사각 유로에서의 열/물질전달 특성 (Heat/Mass Transfer Characteristics on Rotating Square Channel with Bleed Holes)

  • 김상인;김경민;이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1104-1109
    • /
    • 2004
  • The present study has been conducted to investigate convective heat/mass transfer inside the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5 mm and its spacing (P/d=4.9) is about five times of hole diameter. Mass flow rate through bleed holes is 10% of the main flow rate and rotation number is changed form 0.0 to 0.4. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by mass flow rate through bleed holes and Coriolis force of rotating channel for fixed reynolds number. The heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding. However heat transfer on the leading surface is decreased due to Coriolis force.

  • PDF

유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향 (Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel)

  • 박석환;전윤흥;김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

회전하는 순환대칭 구조물의 유한요소 진동해석 기법 (A Method for Finite Element Vibration Analysis of Rotating Structures with Cyclic Symmetry)

  • 김창부;심수섭
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1150-1157
    • /
    • 1998
  • In this Paper, we present an efficient method for finite element vibration analysis of constantly rotating structures with cyclic symmetry, which are deformed to some considerable extent by centrifugal force, Coriolis force and operating load, and vibrate due to several types of exciting forces. A structure with cyclic symmetry is composed of circumferentially repeated substructures with the same geometry. Being only one substructure modeled. the dynamic characteristics of the structure can be analyzed systematically. rapidly and exactly using discrete Fourier transform by means of a computer with small memory.

  • PDF

진행파의 코리올리효과를 이용한 자가발진형 표면탄성파 초소형 자이로스코프 (A Self-Oscillation Type SAW Microgyroscope Based on the Coriolis Effect of Progressive Waves)

  • 오해관;최기선;이형근;이기근;양상식
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.390-396
    • /
    • 2010
  • An 80MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a piezoelectric substrate. The developed sensor consists of two SAW oscillators in which one is used for sensing element and has metallic dots in the cavity between input and output IDTs. The other is used for a reference element. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. According to the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular rate, the difference of the oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz/deg.s within the angular rate range of 0~1000 deg/s. The performances of devices with three IDT structures for two kinds of piezoelectric substrates were characterized. Good thermal stability was also observed during the evaluation process.

코리올리 영향을 고려한 회전하는 터보기계 블레이드의 동특성 해석 (Dynamic Analysis of Rotating Turbomachine Blades Including Coriolis Effect)

  • 이진갑
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2067-2077
    • /
    • 1999
  • Recently, turbomachine blades are becoming larger and more flexible, it is necessary to calculate natural frequencies of a rotating blades for avoiding resonance. This problem is complicated by the fact that blades are tapered, twisted and curved. To keep with this demands, the designer must rely on more exact methods of calculation. In this paper, natural frequencies of a single straight or curved blade with variable R.P.M. are calculated by a stiffness matrix method. Results of investigation on the correspondence between the calculated and other values of the literature are described. The calculated values are agree with the other values but with a small error. Furthermore, the influence of Coriolis force on the natural frequency for rotating, curved turbo blades is described.

An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations

  • Shokouhifard, Vahid;Mohebpour, Saeedreza;Malekzadeh, Parviz;Alighanbari, Hekmat
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.61-76
    • /
    • 2020
  • In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion equations is derived by using Hamilton's principle. The finite element method (FEM) is adopted to develop a general solution procedure. The moving mass is considered on the top surface of the beam instead of supposing it on the mid-plane. In order to consider the Coriolis, centrifugal accelerations and the friction force, the contact force method is used. Moreover, the effects of boundary conditions, the moving mass velocity and various material distributions are studied. For verification of the present results, a comparative fundamental frequency analysis of an FGM beam is conducted and the dynamic transverse displacements of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by a moving mass can be significant for the scientific and engineering community in the area of FGM structures.

코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구 (An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter)

  • 임기원;이완규
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.