• 제목/요약/키워드: Coriolis Force

검색결과 132건 처리시간 0.264초

슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구 (A study on a multi-input time control of multi-joint manipulator using sliding mode)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

Sugeno형태 퍼지 논리를 이용한 로봇 매니플레이터의 독립관절 적응제어 (Independent Joint Adaptive Control of Robot Manipulator Using the Sugeno-type of Fuzzy Logic)

  • 김영태
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.55-61
    • /
    • 2003
  • Control of multi-link robot arms is a challenging and difficult problem because of the highly nonlinear dynamics. Independent joint adaptive scheme is developed for control of robot manipulators based on Sugeno-type of fuzzy logic. Fuzzy logic system is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional forces. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for three-axis PUMA robot are included to show the effectiveness of controller.

비선형 성분을 외한으로 간주했을때의 매니퓰레이터의 슬라이딩 모드제어 (Sliding mode control of manipulator whose nonlinear components are regarded as external disturbance)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.286-291
    • /
    • 1991
  • This paper discusses sliding made control of robot manipurators assuming that nonlinear terms, which are inertia term, Coriolis force term and centrifugal taffn, are external disturbances. We obtained the unknown parameter of its linear terms by Signal Compression Method. We propose a new control input algorithm to decrease chattering in the application of sliding mode control of manipulator whose nonlinear components are regarded as disturbances. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by obtaining a quick switching speed.

  • PDF

원심형, 사류형, 축류형 펌프단에서 살펴본 이차유동의 수치적 고찰 (Numerical Investigation of Secondary Flow in 3 Pump Stages: Centrifugal Multistage/Mixed-flow Stage/ Axial-flow Stage)

  • 오종식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.359-364
    • /
    • 2005
  • Centrifugal pump shows the strongest secondary flow. Wake is formed near pressure surface close to hub at impeller exit for centrifugal pump impeller. Pressure gradient drives secondary flow in the inducer region, while in the remaining region the following sources drive together: > Pressure gradient > Coriolis force Low-momentum fluid near suction surface hub moves toward pressure surface hub in mixed-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow in axial-flow pump impeller

  • PDF

시간에 따라 변화는 회전 각속도를 가지는 원통용기내의 스핀업 (Spin-up in a Cylinder with a Time-Dependent Rotation Rate)

  • 김경석;곽호상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.456-462
    • /
    • 2001
  • Comprehensive numerical computations are made of a homogenous spin-up in a cylindrical cavity with a time-dependent rotation rate. Numerical solutions are acquired to the governing axisymmetric cylindrical Navier-Stokes equation. A rotation rate formula is ${\Omega}_f={\Omega}_i+{\Delta}{\Omega}(1-{\exp}(-t/t_c))$. If $t_c$ is large, it implies that a rotation change rate is small. The Ekman number, E, is set to $10^{-4}$ and the aspect ratio, R/H, fixed to I. For a linear spin-up(${\epsilon}<<$), the major contributor to spin-up in the interior is not viscous-diffusion term but inviscid term, especially Coriolis term, though $t_c$ is very large. The viscous-diffusion term only works near sidewall. But for spin-up from rest, when $t_c$ is very large, viscous-diffusion term affects interior area as well as sidewall, initially. So azimuthal velocity of interior for large $t_c$ appears faster than that of interior for relatively small $t_c$. However, the viscous-diffusion term of interior decreases as time increases. Instead, inviscid term appears in the interior.

  • PDF

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

내부유동을 포함한 굴곡된 파이프의 외평면 진동해석 (Out-of-Plane Vibrations of Angled Pipes Conveying Fluid)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.306-315
    • /
    • 1991
  • 본 연구는 두개의 직선 pipe가 elbow로 연결된 piping system의 내부에 유체가 흐를때 발생하는 out-of-plane 운동을 다루었으며, Extended Hamilton's principle을 이용하여 운동방정식을 유도하였다. clamped-clamped, clamped-pinned; pinned-pinned인 경계조건을 갖는 piping system의 경우, dynamic instability는 일어나지 않음을 고찰하였으며, 각 경계조건에 대한 진동수 방정식으로부터 고유진동수의 수치해를 얻었다. 유체의 속도와 Coriolis힘이 진동수에 미치는 영향을 고찰하였고, 유체의 속도와 압력이 어느값을 넘어설때 buckling-type instability가 일어남을 알았다. 그리고 유체의 속도와 압력의 함수로 등가임계속도를 정의하고 여러가지 경계조건에 대해 buckling 이 일어나는 등가임계속도를 계산하였다.

  • PDF

90도 요철이 설치된 회전덕트에서 유출이 열/물질전달에 미치는 영향 (Effects of Bleeding on Heat/Mass Transfer in a Rotating Channel with Transverse Ribs)

  • 박석환;전윤홍;김경민;이동현;조형희
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.25-31
    • /
    • 2006
  • The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter $(D_h)$ of the square channel is 40.0mm. The bleed holes are located between the rib turbulators on leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surfaces. The rib-to-rib pitch is 10.0 times of the rib height(e) and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow (BR) were fixed at 10,000 and $10\%$, respectively. The results suggest that the heat/mass transfer characteristics in the internal cooling passage are influenced by rib turbulators, bleed flow and the Coriolis force induced by rotation. For the rotating ribbed passage with bleed flow, the heat/mass transfer on the leading surface is hardly affected by bleed flow, but that on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with the bleed flow.

공진 자이로의 재평형 모드 구현과 각속도 측정 실험 (Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests)

  • 진재현;김동국
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

점성유체 속에서 움직이는 로봇팔의 동적 조작도 해석 (Dynamic Manipulability Analysis of Limb Moving in Viscous Fluid)

  • 전봉환;이지홍;이판묵
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2713-2716
    • /
    • 2003
  • This paper presents a dynamic manipulability analysis method of the limb moving in viscous fluid. The key idea of the presented method is that the boundary of joint velocity can be converted to the velocity-dependant dynamic manipulability polytope through the coriolis, centrifugal and drag terms in dynamic equation. The velocity-dependant dynamic manipulability polytope is added to the inertial and restoring force manipulability polytope to get overall manipulability polytope of the limb moving in the fluid Each of the torque and velocity bounds arc considered in the infinite norm sense in joint space, and the drag force of a limb moving in fluid viscous is modeled as a quadratic form An analysis example with proposed analysis scheme is presented to validate the method.

  • PDF