• 제목/요약/키워드: Cored wire

Search Result 75, Processing Time 0.02 seconds

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt (코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.248-253
    • /
    • 2013
  • To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

GTAW of Titanium Using Flux Cored Wire (플럭스 코어드 와이어를 이용한 티타늄의 GTAW)

  • ;Stephen Liu
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.182-184
    • /
    • 2004
  • GTAW of titanium using flux cored wire was exploited. Flux cored wire with MgF$_2$ resulted in 60% deeper penetration than conventional active GTAW which applys fluxes in the form of paste. Emission spectroscopy of the arc with MgF$_2$ showed Ti II peak, indicating higher temperature arc. Elux cored wire formed weld metal with reasonably low oxygen content.

  • PDF

Wear Resistance Evaluation of Contact Tip according to Flux Cored Wire (플럭스 코어드 와이어에 따른 용접 중 콘택트 팁 내마모성 평가)

  • Kim, Dong-Yoon;Hwang, In-Sung;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.42-46
    • /
    • 2013
  • The contact tip for flux cored arc welding has important functions to transmit the welding current to the wire and to guide the wire to molten pool. A damaged contact tip causes a productivity reduction and a welding quality problem. In this study, the welding experiments for the wear resistance of contact tip regarding flux cored wire types were performed. With two fold type and a seamless type flux cored wires, the wear rates of contact tips were compared. In addition, the wear rate was checked according to the contact tip position.

The Latest Technology Development Trends of Flux Cored Wire (Flux Cored Wire의 최신 기술 개발 동향)

  • Im, Hee-Dae;Choi, Chang-Hyun;Jung, Jae-Heon;Kil, Woong
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • Flux Cored Wire is the most widely used welding material for Flux Cored Arc Welding these days. This paper introduces the technical aspects of manufacturing FCW and the development trend of FCW for each type of steel and metal. The studies are ongoing to lower the production cost of seamless-type FCW since it has not been generally used in welding shops so far because of it high cost even though the seamless-type FCW has various advantages than folded-type FCW in terms of manufacturing technology. Meanwhile, a technical research has been carried out to develop a rutile type of FCW products which satisfies high toughness after post heat treatment. In addition, for high-speed fillet welding, there has been a development of welding materials which can be welded in Single Auto-Carriage 100 cpm or more and up to Twin Tandem 200 cpm without occurring any welding defect in order to improve the welding productivity. As Zn coated steel is being used recently to improve the corrosion resistance of the automotive parts, a research and development for Metal Cored Wire has been conducted to reduce the Si island produced in welding operation than those produced when using the former solid wires. A development of welding material that guarantees CTOD performance beyond $-40^{\circ}C$ CTOD to $-60^{\circ}C$ is underway by different steel grades, and FCW for super austenitic stainless steel is being developed as the corrosion resistant steel has been upgraded.

Characteristics of GMA Weld Zone on TiO2 Different Component Flux Cored Wire for S500 Grade Steel (TiO2 성분 플럭스충진와이어에 따른 S500강의 GMA 용접부 특성)

  • Yoo, Cheol;Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.335-342
    • /
    • 2015
  • Recently, the production of oil and gas at the arctic ocean and offshore has been growing. Accordingly, S500 steel with the high tensile strength and excellent toughness has been used and flux cored wire that can be welded to the S500 has been required. In this study, we carried out observation of microstructures, mechanical properties and CTOD (crack tip openning displacement) in the weld zone that GMA (gas metal arc) welded with different component of $TiO_2$ flux core wire (the main components, rutile or Ti-slag) for S500 steel. Weld zone produced with Ti-slag flux cored wire has formed a enough acicular ferrite and shown excellent impact toughness at $-40^{\circ}C$, tensile strength at room temperature and CTOD at $-20^{\circ}C$. As a result, the developed flux cored wire was suitable for S500 steel.

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

A Study on Fatigue Strength Characteristics of Weld Joint using Metal Type Flux Cored Wire (금속계 플럭스들이 용접이음부의 피로강도 특성에 관한 연구)

  • 강성원;신동진;김환식
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.151-161
    • /
    • 1994
  • FCAW has wide application in ship fabrication, maintenance and field erection. It has many advantages over SMAW.SAW and GMAW process. In many applications, the FCAW provides highquality weld metal. This method can reduce weld defects especially porosity and spatter. But the fatigue characteristics of those deposited metal have been rarely investigated. The purpose of this study is to investigate the cyclic stress-strain behavior and fatigue tests by the constant strain control were carried out on the rounded smooth specimen with deposited metal using the metal type flux cored wire. As the results of this study for the deposited metal welded by the metal type flux cored wire, the hardening or softening characteristics under cyclic load were investigated and cyclic stress-strain curve, strain-fatigue life curve, stress-strain function and fatigue life relation which are useful to estimate the fatigue life under the stress concentration condition were obtained.

  • PDF

Characteristics comparison between air-cored and iron-cored 100 kW HTS field winding synchronous motors

  • Yoon, Jonghoon;Bong, Uijong;An, Soobin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.38-43
    • /
    • 2020
  • This paper presents comparative research on characteristics of air-cored and iron-cored high-temperature superconductor (HTS) field winding synchronous motors. The 100 kW air-cored model is designed analytically by Spatial Harmonic Method, and based on this model, the iron-cored model having the same output power is designed for comparison. Due to the substantial difference of permeability property between air and iron-core, there is a difference of magnetic field magnitude and angle with respect to the HTS tape c-axis, resulting in a different critical current of the field winding considering the anisotropic property of HTS tape. For a detailed comparison between two models, the following key motor characteristics are calculated through the Finite Element Method (FEM) simulation: 1) critical current; 2) HTS wire length; and 3) torque characteristics. From the simulation results, it can be confirmed that the critical current value of the iron-cored model increases by 33 %. Also, in the case of the superconducting wire consumption, those of the iron-cored and air-cored models are 95.3 m and 815.6 m, respectively. So the wire usage can be reduced to about 88 % by using iron core. However, in terms of torque characteristics, the torque ripple of the iron-cored model is about twice as large as that of the air-cored model, which may be a disadvantage on vibration and acoustic noise.