• 제목/요약/키워드: Core-shell model

검색결과 78건 처리시간 0.025초

침엽수재(針葉樹材)의 수분확산(水分擴散)모델을 이용(利用)한 소나무판재(板材)와 평소각재(平小角材)의 열기건조(熱氣乾燥) 시간(時間)과 함수율(含水率) 추정(推定)에 관(關)한 연구(硏究) (Studies on Predicting the Kiln Drying Time and Moisture Content of Board and Dimension Lumber of Pinus densiflora using an Internal Moisture Diffusion Model of Softwood)

  • 이상봉;정희석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권3호
    • /
    • pp.67-81
    • /
    • 1989
  • This experiment was carried out to know the mothod of changing the step of moisture content schedule with time in conventional kiln drying. For the purpose of this object. we made drying model by applying the moisture diffusion model by J.FSiau(1984) to average moisture content equation by J.Crank(1956) derived it from Fick's second law. And to verify this method of drying model. 2.5cm-thick boards and 5.0cm-thick dimension lumbers of Pinus densiflora were kiln-dried with the schedule of T11-C3 and T10-C4, respectively. And then the drying rates were investigated and compared with those calculated from drying model. The results obtained were as follows 1. Average drying rate and total drying time of board to dry to 6.5% moisture content were 0.64%/hr and 109hr., and those of dimension lumber to dry to 8.3% moisture content were 0.4%/hr. and 162hr., respectively. 2. The moisture content of shell and core decreased by equalizing treatment and increased by conditioning treatment both on board and dimension lumber. But the moisture gradient was lower after conditioning than after equalizing. 3. As the drying was proceeded, the transverse bound water diffusion coefficient all but linearly decreased, the water vapor diffusion coefficient abruptly curvilinearly increased, while the transverse diffusion coefficient curvilinearly decreased both on board and dimension lumber. But each of diffusion coefficients on board was larger than that on dimension lumber. 4. Compared to experimential drying rate of board. theoretical drying rate was larger at 30.0%-21.8% moisture content range and was similiar at 21.8%-5.4% moisture content. And in case of dimension lumber, the drying rate was similiar at 30.0%-16.1% moisture content range but theoretical drying rate was much lower at 16.1%-8.3% moisture content range. 5. The possibility of adapting this drying model to changing the moisture content schedule step with time was in the range of 21.8%-5.4% moisture content on board. And in the case of dimension lumber that was in the range of 30.0%-16.1% moisture content.

  • PDF

금속이온에 의한 CdSe 나노결정의 형광 소광 및 회복 특성 (Photoluminescence Quenching and Recovery of the CdSe Nanocrystals by Metal Ions)

  • 방지원;김봄이;구은회;김성지
    • 대한화학회지
    • /
    • 제60권2호
    • /
    • pp.131-136
    • /
    • 2016
  • CdSe 기반 나노결정의 구리이온에 의한 형광 소광 특성 및 아연이온에 의한 형광 회복 특성을 관찰하였다. 구리이온이 첨가되었을 경우, CdSe 양자점에서는 매우 빠르고 급격한 형광 소광 특성을 보이는 반면에 CdSe 나노라드의 경우에서는 형광이 서서히 소광되는 특성을 보인다. 구리이온으로 형광을 소광시킨 CdSe/CdS(핵/껍질) 양자점에 아연이온이 첨가되면 소광된 양자점의 형광이 회복된다. 용액 내 1 μM의 아연농도에서 양자점의 형광이 50% 증가됨을 확인하였으며, 아연 농도가 증가함에 따라 양자점의 형광세기가 증가되며 이는 Langmuir binding isotherm 모델로 해석할 수 있다. 이러한 연구를 바탕으로 CdSe 기반의 나노결정을 이용한 형광 화학 센서를 구현할 수 있을 것으로 기대한다.

격자형 금형의 냉각효과를 고려한 구형 LNG 탱크용 대형 알루미늄 후판의 열간성형해석 (FE-Analysis of Hot Forming of Al Large Thick Plate for Spherical LNG Tank Considering Cooling Performance of Grid-Typed Die)

  • 이정민;이인규;김대순;권일근;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1190-1198
    • /
    • 2012
  • A hot forming of large thick Al plate using a grid-type hybrid die is a process to make a shell plate for the production of a spherical LNG tank. This process is characterized by using a grid-typed die with an additional air cooling system for reducing the cooling time of the heated plate after hot forming. The process consists of the plate's feeding, heating, forming and cooling in detail and each of them is continuously performed along the rail. This paper was designed to propose the analytical and experimental methods for determining the convection and interfacial heat transfer coefficients required in hot forming analysis of Al plate. These values in the analysis are to reproduce numerically the cooling performance of grid-typed die and cooling device. Interfacial heat transfer was obtained from the heat transfer experiments for different pressures and inverse analysis method. To verify the efficiency of the coefficient values obtained from above methods, FE analysis and experiment of the hot spherical-forming process were conducted for a small-scaled model. The convection coefficient was also calculated from flow analysis of air released by cooling device within grid-typed die using ANSYS-CFX.

Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor

  • Kim, Mi Sun;Lee, Eun-Jung;Kim, Jae-Won;Chung, Ui Seok;Koh, Won-Gun;Keum, Ki Chang;Koom, Woong Sub
    • Radiation Oncology Journal
    • /
    • 제34권3호
    • /
    • pp.230-238
    • /
    • 2016
  • Purpose: Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Materials and Methods: Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Results: Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. Conclusion: In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권5호
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.