• Title/Summary/Keyword: Core-shell catalyst

Search Result 41, Processing Time 0.031 seconds

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

Recyclable Porphyrin Catalyst with Core-shell Nanostructure

  • Choi, Bo-Gyu;Ko, Soo-Y.;Nam, Won-Woo;Jeong, Byeong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1819-1822
    • /
    • 2005
  • In the search for a simple preparation method of heterogeneous catalyst, the iron porphyrins were coordinated bonded to the surface of a polymeric core-shell nanosphere. The heterogeneous catalyst was characterized by FT-IR, scanning electron microscope, and UV-vis spectrophotometer. The iron porphyrin bound core-shell nanospheres was about 470 nm in diameter and their catalytic activity for cyclohexene oxidation was similar to a homogeneous iron porphyrin in a solvent composition range of 25-75% acetonitrile/water (v/v). In addition, they could be recovered by simple centrifugation and their catalytic activity was maintained more than the third cycle.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

A Study on the Effect of Surfactant in Synthesizing Titanium Dioxide/Acrylate Core-Shell Polymer ($TiO_2$/Acrylate 코어-셀 합성에서 계면활성제의 영향에 관한 연구)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Titanium dioxide particles are used as photocatalysts, sensors, adsorbents and catalyst. Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using Acrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We found that when Acrylate core prepared by adding 0.5~2.0 wt% EU-S133D, Titanium dioxide / Acrylate core-shell polymerization was carried out on the surface of Titanium dioxide particle without forming the new Titanium dioxide particle during acrylate shell polymerized in the inorganic/organic core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer(TGA) and morphology of latex by scanning electron microscope(SEM).

Recent Advances in Catalyst Materials for PEM Water Electrolysis

  • Paula Marielle Ababao;Ilwhan Oh
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.2
    • /
    • pp.19-34
    • /
    • 2023
  • Due to the intermittency of renewable energy sources, a need to store and transport energy will increase. Hydrogen production through water electrolysis will provide an excellent way to supplement the intermittency of renewable energy sources. While alkaline water electrolysis is currently the most mature technology, it has drawbacks of low current density, large footprint, gas crossover, etc. The PEM water electrolysis has potential to replace the alkaline electrolysis. However, expensive catalyst material used in the PEM electrolysis has been the bottleneck of widespread use. In this review, we have reviewed recent efforts to reduce catalyst loading in PEM water electrolysis. In core-shell nanostructures, the precious metal catalyst forms a shell while heteroatoms form a core. In this way, the catalyst loading can be significantly reduced while maintaining the catalytic activity. In another approach, a corrosion-resistant support is utilized, which provides a stable platform to impregnate precious metal catalyst.

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution

  • Kim, Do-Young;Lee, Young-Woo;Han, Sang-Beom;Ko, A-Ra;Kim, Hyun-Su;Kim, Si-Jin;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.

Titanium Containing Solid Core Mesoporous Silica Shell: A Novel Efficient Catalyst for Ammoxidation Reactions

  • Venkatathri, N.;Nookaraju, M.;Rajini, A.;Reddy, I.A.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.143-148
    • /
    • 2013
  • Novel titanium containing solid core mesoporous shell silica has been synthesized by using octadecyltrichloro silane and triethylamine. The synthesized material was characterized by various physicochemical techniques. The mesoporous character of the material has been revealed from PXRD studies. The presence of octadecyltrichloro silane and triethylamine in the sample has been confirmed from EDAX studies. TG/DTA analysis reveals the thermal characteristics of the synthesized material. The presence of titanium in the frame work and its coordination state has been studies by UV-vis DR studies and XPS analysis. Chemical environment of Si in the framework of the material has been studied by $^{29}SiMASNMR$ studies. The surface area of the material is found to be around $550\;m^2g^{-1}$ and pore radius is of nano range from BET analysis. The spherical morphology and particle size of the core as well as shell has been found to be 300 nm and 50 nm respectively from TEM analysis. The catalytic application of this material towards the synthesis of caprolactam from cyclohexanone in presence of hydrogen peroxide through ammoxidation reaction has been investigated. The optimum conditions for the reaction have been established. The plausible mechanism for the formation of core silica and conversion of cyclohexanone has been proposed.

Synthesis of Vertically Aligned SiNW/Carbon Core-shell Nanostructures

  • Kim, Jun-Hui;Kim, Min-Su;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.2-488.2
    • /
    • 2014
  • Carbon-based materials such as carbon nanotubes and graphene have emerged as promising building blocks in applications for nanoelectronics and energy devices due to electrical property, ease of processability, and relatively inert electrochemistry. In recent years, there has been considerable interest in core-shell nanomaterials, in which inorganic nanowires are surrounded by inorganic or organic layers. Especially, carbon encapsulated semiconductor nanowires have been actively investigated by researchers in lithium ion batteries. We report a method to synthesize silicon nanowire (SiNW) core/carbon shell structures by chemical vapor deposition (CVD), using methane (CH4) as a precursor at growth temperature of $1000{\sim}1100^{\circ}C$. Unlike carbon-based materials synthesized via conventional routes, this method is of advantage of metal-catalyst free growth. We characterized these materials with FE-SEM, FE-TEM, and Raman spectroscopy. This would allow us to use these materials for applications ranging from optoelectronics to energy devices such as solar cells and lithium ion batteries.

  • PDF

Nanostructure Control of PtNiN/C Catalysts for Oxygen Reduction Reaction by Regulating Displacement Rate of Precursor (전구체 치환 속도 조절을 통한 산소환원반응용 PtNiN/C 촉매의 나노구조 제어)

  • Dong-gun Kim;Seongseop Kim;Sung Jong Yoo;Pil Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • Efforts are actively underway to address the issues related to the high cost of Pt-based catalysts for oxygen reduction reactions by designing high-performance Pt-based alloys through the control of their nanostructures. In this study, a method was proposed to control the nanostructure of Pt-based alloys, either hollow or core-shell, by adjusting the pH of the solution during the galvanic replacement reaction between the carbon-supported nickel-nickel nitride composite and the Pt ions. The physical characteristics, including the state, quantity, and morphology of the metal particles under different preparation conditions, were evaluated through X-ray diffraction, transmission electron microscopy, and inductively coupled plasma. When the prepared catalysts were employed for the oxygen reduction reaction, they exhibited an improvement in area specific-activity compared to a commercial Pt/C, with a 1.7 and 1.9-fold enhancement for the hollow and core-shell structured catalysts, respectively.

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Kang, Dong-Hyeon;Eum, Min-Sik;Lee, Byeong-No;Bae, Tae-Sung;Lee, Kyu-Reon;Lim, Heung-Bin;Hur, Nam-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3712-3719
    • /
    • 2011
  • Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.