• Title/Summary/Keyword: Core sand

Search Result 106, Processing Time 0.032 seconds

A Study on Designs for the Pulley and Electric-wire for 'HELLO' Artwork at Incheon Airport Terminal 2 (인천공항 제2여객터미널 'HELLO' 작품의 풀리와 전선의 디자인에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.16 no.10
    • /
    • pp.415-420
    • /
    • 2018
  • This study focused on the designs for the pulley and electric cables for Hello, the artwork displayed at the Great Hall at the Incheon International AirportTerminal 2. This study presented designs for the pulley and cables, and the parts were applied and tested to analyze their durability and problems. Improvements were made for the final production of the work and three samples were produced respectively for the designs of the pulley and the cables. As are sult, this study found that for the pulley, the most efficient design was to fix the cables at its center. In the case of cables, it was most efficient touse flat cables with a wire in the core. These designs were applied to the artwork Hello, which is currently installed at the Great Hall at the Incheon International Airport Terminal 2. Future research will be conducted to make further improvements to the cable sand the pulley.

Management to Prepare Fast Green Suitable for International Golf Tournament in Korea - A Case Study of the Lakeside Country Club - (한국에서 국제 골프 토너먼트 규격에 맞는 빠른 그린 관리 방법 - 레이크사이드 컨트리 클럽을 사례로 -)

  • 장유비;김진관;박장혁;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • The purpose of this study is to propose a standard putting green management program to prepare fast green suitable for international golf tournaments, and to conform whether the reported green speed model can be applied to the real field situations. The west course of Lakeside Country Club was selected for the case study. This study was initiated on August 1st, 2001 and continued through October 4th, 2001. The results are summarized as follows: 1. Following the long-term schedule, 'penncross' creeping bentgrass turf was mowed at 5.0mm(37days), 4.5mm(8days), 4.0mm(4days), 3.5mm(2days), 3.2mm(2days), 3.0mm(2days), 2.8mm(2days) and the mowing direction was changed daily. Variation of mowing height was reduced to a minimum range. Core aerification with deep tines was applied 19 days prior to the first practice round. Dry sand maintenance was top-dressed 2 times at 1.5mm/$m^2$ on the 17th day and 1.0mm/$m^2$ on the 10th day. Minimum irrigation was applied to keep the turf alive. During the tournament preparation week, dew on the putting greens was removed by using a sponge roller. Following the dew removal, the greens were cut once each morning at a height of 2.8mm. The mower used was the 21 inch working behind mower equipped with a tournament bedknife and 11 reel blades. Following the mowing, the peens were rolled with a light-weight roller in one direction in the morning. Rolling was used as a finishing technique to ensure that the surface was as smooth as possible, and to provide true ball roll and maximum green speed. In conclusion these management practices satisfied the daily green stimpmeter readings required for USGA championship play. 2. During the period of tournament preparation, no damage was observed on the green, but scalping in green edge appeared in about 0.39% of the total area of 18 greens in the west course.

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

Liminality & Transformative Drama in Shelley's "Julian & Maddalo"

  • Narrett, Eugene
    • English & American cultural studies
    • /
    • v.10 no.2
    • /
    • pp.149-207
    • /
    • 2010
  • Written simultaneously with Prometheus Unbound, Shelley's "Julian & Maddalo" is a masterwork of dramatic poiesis, of doubling embedded in its couplets, dialogic debate on human nature and contrasted symbolic emblems. The emblems mirror each other and are themselves sites of generative paradox: the "heaven illumined" but "dreary tower" of the Maniac and the glorious sunsets on the "ever-shifting sand" of the Lido, a wasteland that is a place of self discovery but also of "abandonment" and barren mingling figured, inter alia, in its "amphibious weeds," a trope of the poem's personae. This essay also explores the poem's dramatic structure and various rhetorical devices, beginning with the Preface, a threshold of complex identity disguise that Shelley uses for veiled self-presentation, as in "Alastor," mirroring and literary references replete with nuanced ironies. I focus mainly on the complex figures of liminality Shelley uses to develop his own thoughts (as well as his ongoing debates with Byron) about man's potential for growth in thought, insight and empathy, in political reform and interpersonal and individual healing. Advancing Shelley's most optimistic ideas, Julian, escorted by Maddalo observes the Maniac, -- a living ruin whose pained eloquence reveals the link of eros to poiesis and the limits of the latter's ability to 'transform a world.' The Maniac is the core of muse-work (remembering, thinking and song) and Shelley presents him as its emblem. He also is prefigured in and reflects the quintessentially liminal Lido with its "barren embrace" of sea and land. Yet it is less the Maniac's feeling that his grief is "charactered in vain…on this unfeeling leaf" than Julian's rationales for leaving the site of pain that point to Shelley's final comment on poetry's transformative limits. As the primary haploids of the drama's meiosis re-combine and two of them, Maddalo and the maniac fall away, an analogy I briefly develop and embedded in the erotic dynamics of poiesis, Shelley suggests, as he did at the beginning of his poetic lyricism in "Alastor" and at its end in "the Triumph of Life"that images mislead and delude; that "the deep truth is imageless" and redemption is not in but beyond figuration.

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

Distribution Characteristics of Land and River Aggregate Resources in Yeongam Area by Deposition Period (영암지역 육상 및 하천 골재의 퇴적 시기별 분포 특성)

  • Jin Cheul Kim;Sei Sun Hong;Jin-Young Lee;Ju Yong Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.243-251
    • /
    • 2024
  • In this study, a surface geological survey was first conducted to investigate aggregate resources in the Yeongam area of Jeollanam-do, and a drilling survey was conducted in the lower part of the surface, which was difficult to identify through a surface geological survey, to determine the spatial distribution of aggregates. Drilling sites were selected considering the topographical development and Quaternary alluvium characteristics of the study area, and river aggregate drilling surveys were conducted at a total of 5 points and land aggregate drilling surveys were conducted at a total of 28 points. Borehole core sediments were classified into seven sedimentary units to determine whether they could be used as aggregates, and optically stimulated luminescence dating was performed on representative boreholes to measure the depositional period for each sedimentary unit. As a result of the study, most of the Yeongam area had a very wide river basin, so it was estimated that there would be a large amount of aggregate, but the amount of aggregate was evaluated to be very small compared to other cities and counties. Most of the unconsolidated sedimentary layers in the Yeongam area are composed of blue-grey marine clay with a vertical thickness of more than 10 m. The sand-gravel layer corresponding to the aggregate section is distributed in the lower part of the marine clay, thinly covering the bedrock weathering zone. This is because the amount of aggregates themselves is small and most of the aggregates are distributed at a depth of 10 m below the surface, which is currently difficult to develop, so the possibility of developing aggregates is evaluated to be very low. As a result of dating, it can be seen that the blue-grey marine clay layer is an intertidal sedimentary layer formed as the sea level rose rapidly about 10,000 years ago. The deposition process continued from 10,000 years ago to the present, and as a result, a very thick clay layer was deposited. This clay layer was formed very dominantly for about 6,000 to 8,000 years, and the sand-gravel layer in the section where aggregates deposited in the Pleistocene period can exist was measured to have been deposited at about 13.0 to 19.0 ka, and about 50 ka, showing that it was deposited as paleo-fluvial deposits before the marine transgression process.

Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands (고결모래의 일축압축강도와 전단파속도의 상관관계)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • Cemented soils have been widely used in road and dam construction, and recently ground improvement of soft soils. The strength of such cemented soils can be tested by using cored sample or laboratory-prepared specimen through unconfined compression or triaxial tests. It takes time to core a sample or prepare a testing specimen in the laboratory. In a certain situation, it is necessary to determine the in-situ strength of cemented soils very quickly and on time. In this study, the relation between unconfined compressive strength and shear wave velocity was investigated for predicting the in-situ strength of cemented soils. A small cemented specimen with 5 cm in diameter and 10 cm in height was prepared by Nakdong river sand and ordinary Portland cement. Its cement ratios were 4, 8, 12, and 16% and air cured for 7, 14, and 28 days. For recycling of resources, a blast furnace slag was also used with sodium hydroxide as an alkaline activator. The shear wave velocity for cemented soils was measured and then unconfined compressive strength test was carried out. As a cement ratio increased, the shear wave velocity and unconfined compressive strength increased due to increased density and denser structure. The relation between unconfined compressive strength and shear wave velocity increased nonlinearly for cemented soils with less than 16% of cement ratio.

Sediment Characteristics of Waste Disposal Sites in the Southwestern UUeung Basin, the East Sea (동해 울릉분지 남서해역 해양투기장의 퇴적물 특성)

  • Chun, Jong-Hwa;Huh, Sik;Han, Sang-Joon;Shin, Dong-Hyeok;Cheong, Dae-Kyo;Hong, Ki-Hoon;Kim, Suk-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.312-322
    • /
    • 1999
  • We have studied both submarine morphology and sediment characteristics of waste disposal sites in the southwestern Ulleung Basin, East Sea, as part of a marine environmental preservation program. The Jung waste disposal site in the outer shelf is characterized by the thick accumulation of coarse-grained palimpsest sediments and fine-grained sediments from various sources. The Byung waste disposal site in the continental slope is generally characterized by hemipelagic muds with intermittent sandy sediments originated from the outer shelf and upper slope. The hemipelagic sediments, draping the seafloor, consist of fluidized muds. The core sediments show numerous bioturbation structures which cause vertical mixing of sediments. The surface sediments can be divided into four sand types (S-1, S-2, S-3, and S-4) and two mud types (M-1 and M-2) based on relative contents of reworked coarse-grained palimpsest sediments and fine-grained sediments. sorting and heavy mineral contents. The sands are probably relict sediments reworked during high-energy conditions such as typoon or storm. On the other hand, the muds were originated from various sources such as recent input from the Nakdong River, reworked fine-grained sediment from the shelf or suspended particulate matter from the East Sea Warm Current.

  • PDF

Estimation of Sediment Provenance Using Clay Mineral Composition in the Central Basin of the Ross Sea Continental Margin, Antarctica (남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적)

  • Ha, Sangbeom;Khim, Boo-Keun;Colizza, Ester;Giglio, Federico;Koo, Hyojin;Cho, Hyen Goo
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.265-274
    • /
    • 2019
  • To trace the provenance of fine-grained sediments in response to the growth and retreat of glaciers (i.e., Ross Ice Sheet) that affects the depositional process, various kinds of analyses including magnetic susceptibility, granulometry, and clay mineral composition with AMS 14C age dating were carried out using a gravity core KI-13-GC2 obtained from the Central Basin of the Ross Sea continental margin. The sediments mostly consist of silty mud to sand with ice-rafted debris, the sediment colors alternate repeatedly between light brown and gray, and the sedimentary structures are almost bioturbated with some faint laminations. Among the fine-grained clay mineral compositions, illite is highest (59.1-76.2%), followed by chlorite (12.4-21.4%), kaolinite (4.1-11.6%), and smectite (1.2-22.6%). Illite and chlorite originated from the Transantarctic mountains (metamorphic rocks and granitic rocks) situated to the south of the Ross Sea. Kaolinite might be supplied from the sedimentary rocks of Antarctic continent underneath the ice sheet. The provenance of smectite was considered as McMurdo volcanic group around the Victoria Land in the western part of the Ross Sea. Chlorite content was higher and smectite content was lower during the glacial periods, although illite and kaolinite contents are almost consistent between the glacial and interglacial periods. The glacial increase of chlorite content may be due to more supply of the reworked continental shelf sediments deposited during the interglacial periods to the Central Basin. On the contrary, the glacial decrease of smectite content may be attributed to less transport from the McMurdo volcanic group to the Central Basin due to the advanced ice sheet. Although the source areas of the clay minerals in the Central Basin have not changed significantly between the interglacial and glacial periods, the transport pathways and delivery mechanism of the clay minerals were different between the glacial and interglacial periods in response to the growth and retreat of Ross Ice Sheet in the Ross Sea.

Late Quaternary Paleoenvironmental Changes in the Western Nakdong River delta (낙동강 삼각주 서부지역의 제4기 후기 고환경 변화)

  • Ryu, Choon-Kil;Kang, Sora;Chung, Sung-Gyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.443-458
    • /
    • 2005
  • Late Quaternary deposits of the core in the western area of the Nakdong River delta consist of four sedimentary units: Unit I, II, III and IV, in ascending order, controlled by the sea-level change since the last interglacial period. Unit I unconformable overlying Cretaceous basement rocks is composed of sandy gravel and sand deposited in a fluvial channel before the first marine transgression. Unit II composed of stiff massive mud is interpreted as a shallow marine deposits formed during the last interglacial period (probably MIS 5). The development of the fissures coated with oxidized materials in the upper part of Unit II is a feature of subaerial exposure, which indicates erosional contact with the upper Unit III. Unit III is made up of soft massive mud and soft shelly massive mud deposited in a tidal flat and a inner shelf, respectively, since the Holocene transgression (about 9,000 yr BP). Unit Ⅳ consisted of soft shell bedded mud and yellowish sandy mud was deposited in the delta environments during the regression (after about 5,000 yr BP). The lower shell bedded mud was deposited in a tidal flat and the upper sandy mud was deposited in the floodplain corresponding to present site of the Nakdong River delta.