• 제목/요약/키워드: Core drilling

Search Result 118, Processing Time 0.021 seconds

A Case Report on the Sea-Trial of the Seabed Drill System and Its Technical Trend (해저 착저식 시추기 시험시추 보고 및 기술 동향)

  • Pak, Sang Joon;Kim, Hyun-Sub
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.479-490
    • /
    • 2016
  • Seabed drilling system has recently been used to drill seafloor mineral resources. This case report highlights the procedure and result of sea-trial of seabed drilling system at off-shore of Japan on March, 2016 as well as briefs an international-technical trend of seabed drilling system. In case of having less than 100 m drill depth, seabed drilling system is favorable for seafloor mineral deposits which are mostly distributed within a narrow district and situated between 1000~3000 m water depth, compared with vessel-mounted drilling system. The system is featured by the remotely-operated drill gear, which has top drives, drill strings and mud system on it. The core samples are generally recovered to ship with seabed driller after a dive. In this sea-trail, recovery rate of core samples averagely shows about 55% and the recovered rocks mostly correspond to fresh and/or weak-altered basalt. In case of drilling hydrothermal ore deposit, the recovery rate would be lower than 55% because of the fragile nature of ores. Alternatively it is used to collect cutting chips through riser or bins in order to increase the recovery rates. Recently a reverse circulation method is taken considered to acquire the better cutting-chips. Three-leg type outrigger system and four-leg type leveling system are the competing landing-instruments of seabed drill system. However the landing efficiency using these gears has to be further monitored due to lack of case reports.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

A Petrological and Geochemical Study of Granites in the Cheju Island (제주도에서 산출되는 화강암에 관한 연구)

  • Ahn, Kun Sang;Lee, Hyun Koo;Lim, Hyun Cheol
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.513-518
    • /
    • 1995
  • A granite drilling core (-1200 m) obtained near the Majang cave in east part of the Cheju island. The rock is pinksh in color and has miarolitic cavities. It is coarse-grained rock and consists of quartz, plagioclase, alkali feldspar, biotite and magnetite. The rock shows characteristically micrographic texture. The alkali feldspar is subhedral to anhedral and generally interstitial grains and fonns micrographic texture. K/Ar age of alkali feldspar in the core specimen is $58.14{\pm}1.4Ma $ (early Tertiary). The age, rock features and whole rock chemistry of the rock has strong resemblance to micrographic granites, so called "masanite", in southeastern part of the Korean peninsular. The granitic fragments from drilling core (- 920 m) obtained in Jungmun area in south part of the Cheju island consist of quartz, plagioclase, alkali feldspar and biotite. The fragments in the Jungmun area are similar to granitic xenolith near the Cheju city for the absence of micrographic texture and different alkali feldspar.

  • PDF

Evaluation of a Drill Bit Button Arrangement for Enhanced Drilling Efficiency (천공 효율 향상을 위한 드릴비트 버튼배열 성능평가 방법)

  • Kang, Hoon;Cho, Jung Woo;Jeong, Myeong Sik;Cho, Yong Jae;Lee, Sang Kon;Lee, Jae Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.575-581
    • /
    • 2015
  • The drill bit, which directly transmits percussive forces and torque to the rock, is the core part of a rock drilling machine. For effective drilling, the button arrangement of a drill bit should be optimized because it is the most important design factor in determining drilling efficiency. Furthermore, a quantitative method is necessary to evaluate the button arrangement for the optimization of the drill bit button. Therefore, we propose a new method for the evaluation of the drill bit button arrangement using new evaluation indices, which include the overlapped impact area, blank area, and moment. Moreover, we verify the suitability of the proposed evaluation method by applying it to the conventional button arrangement.

Evaluation of Subgrade State in the Gyeongbu High Speed Railway through GPR tests and Drilling Boreholes (GPR탐사와 시추조사를 통한 경부고속철도 노반상태평가)

  • Park, Jun-O;Min, Hyeong-Gi;Jeon, Il-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.984-996
    • /
    • 2009
  • When evaluating the general subgrade states such as geology, stiffness, underground water, compaction and deformation in the Gyeongbu high speed railway, some applicable testing methods should be selected because lots of trains are currently running. The applicable methods includes not only non-destructive tests such as GPR test, electricity resistivity test, MASW proving, but also standard penetration test (SPT), core test, elastic wave tomography through drilling boreholes and measurements using settlement measuring system or inclinometer, etc. In order for evaluating the subgrade states in the Gyeongbu high speed ralway, this study performed GPR test in several sections and drilling boreholes whose locations were chosen after comparing GPR test results and track maintenance history. Furthermore, the progress of subgrade deformations was analysed by comparing previous and this time GPR test results. The results of this study shall be used to understand the general states of currently operating Gyeongbu high speed railway.

  • PDF

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

An Empirical Approach for Improving the Estimation of the Concrete Compressive Strength Considered the Effect of Age and Drilled Core Sample (재령과 코어의 영향을 고려한 향상된 콘크리트 압축강도 추정기법의 경험적 제안)

  • Oh, Hongseob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.103-111
    • /
    • 2015
  • To evaluate the compressive strength of concrete, rebound test and ultra pulse velocity methods as well as core test were widely used. The predicted strength effected by age, maturity and degradation of concrete, is a slight difference between in-situ concrete strength. The compressive strength of standard cylinder specimens and core samples by obtained from drilling will have a difference since the concrete is disturbed during the drilling by machinery. And the rebound number and ultra pulse velocity are also changed according to the age and maturity of concrete that effected to the surface hardness and microscpic minuteness. The authors performed the experimental work to reflect the age and core effect to the results from NDE test. The test results considering on the core and age of concrete were compaired with the proposed equation to predict the compressive strength.

A Study on the Strength of Concrete Core in Existing Structures (실존 콘크리트 구조체의 코어 강도에 관한 연구)

  • Bae, Young-Mi;Kim, Min-Su;Kwon, Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.611-614
    • /
    • 2005
  • This study concerns the strength of concrete cores drilled from existing structures. The test factors are core size, drilled position of core, concrete age and concrete strength. The test results are as follows; (1) Under the filled condition of curing, concrete strength for three years are larger than that of 28 days by $15\~20\%$ (2) According to the core size effect from diameter of 75mm to 150mm , the variation of core strength are by $8\~18\%$ (3) According to the wall height of 1m, the strength of lower point of wall is than larger that of the upper point by $5\~20\%$. (4) In Accessing the core strength of concrete as a basis, the effect of core size and drilling position should be considered.

  • PDF

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).