• Title/Summary/Keyword: Core composition

Search Result 498, Processing Time 0.033 seconds

The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons (표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.226-231
    • /
    • 2007
  • High frequency loss property of nanocrystalline amorphous ribbon with a high resistivity insulation layer of $TiO_2$ and $SiO_2$ was studied. The insulation layer was fabricated by sol-gel method using dip-coating. The optimum composition ratio of metal alkoxide and slurry for fabrication of insulation layer was established and insulation layer with high adhesion was coated on the nanocrystalline amorphous ribbon. Frequency loss of magnetic core material manufactured on nanocrystalline amorphous ribbon with the surface insulation layer decreased over 40 % compared with that of magnetic core material without surface insulation layer. The insertion loss of an inductive coupler, which was prepared by using magnetic core material coated insulation layer, decreased due to reduction of frequency loss for magnetic core material and insertion loss decreased in proportion to frequency.

Analyzing the Instruments on core competencies of the 2015 Revised Informatics Curriculum (2015 개정 교육과정의 정보과 핵심역량에 관한 검사도구 분석)

  • Woo, HoSung;Kim, JaMee;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • Competency is an extended concept rather than knowledge and skill, which means the ability to efficiently and rationally solve various problems. This study focuses on the core competencies presented in the 2015 Revised Informatics Curriculum and aims to analyze the constitution method and composition of domestic and overseas Instruments that can measure core competencies. As a result of analyzing 12 Instruments developed by the countries and organizations, nine Instruments measure two or more competencies based on computing thinking, information culture literacy, and cooperative problem solving ability. Three Instruments have one competency were measured. Ten instruments were computer based tests, and 50% of the items were developed by two or more of multiple choice item, subjective item, and descriptive item. It is important to note that this study provided a crucial step in the development of Instruments to diagnose competencies to be developed into informatics science education.

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • Sin, Yong-Seung;Jang, Hyeon-Sik;Im, Jae-Yeong;Im, Se-Yun;Lee, Jong-Un;Lee, Jae-Hyeon;Wang, Junyi;Heo, Geun;Kim, Tae-Geun;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy (IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

Characteristics of Rhenium-Iridium coating thin film on tungsten carbide by multi-target sputter

  • Cheon, Min-Woo;Kim, Tae-Gon;Park, Yong-Pil
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.328-331
    • /
    • 2012
  • With the recent development of super-precision optical instruments, camera modules for devices, such as portable terminals and digital camera lenses, are increasingly being used. Since an optical lens is usually produced by high-temperature compression molding methods using tungsten carbide (WC) alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coatings for the core surface. In this study, Rhenium-Iridium (Re-Ir) thin films were deposited onto a WC molding core using a sputtering system. The Re-Ir thin films were prepared by a multi-target sputtering technique, using iridium, rhenium, and chromium as the sources. Argon and nitrogen were introduced through an inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having a composition ratio of 30 : 70, and the Re-Ir thin films were formed with a 240 nm thickness. Re-Ir thin films on WC molding core were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), and Ra (the arithmetical average surface roughness). Also, adhesion strength and coefficient friction of Re-Ir thin films were examined. The Re-Ir coating technique has received intensive attention in the coating processes field because of promising features, such as hardness, high elasticity, abrasion resistance and mechanical stability that result from the process. Re-Ir coating technique has also been applied widely in industrial and biomedical applications. In this study, WC molding core was manufactured, using high-performance precision machining and the effects of the Re-Ir coating on the surface roughness.

Genetic Structure and Composition of Genetic Diversity in the Kouchi Sub-breed of the Japanese Brown Cattle Population

  • Honda, Takeshi;Fujii, Toshihide;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1631-1635
    • /
    • 2007
  • Japanese Brown cattle, one of the four domestic beef breeds in Japan, are suffering from numerical reduction due to economic pressure from profitable breeds. In this study, all the reproductive cows in the Kouchi sub-breed of the Japanese Brown cattle that were alive in July 2005 were investigated by pedigree analysis to clarify genetic structure and composition of genetic variability. In addition, genetically important individuals for the maintenance of genetic variability of the sub-breed were also identified through the core set method. The number of cows analyzed was 1,349. Their pedigrees were traced back to ancestors born around 1940, and pedigree records of 13,157 animals were used for the analysis. Principal component analysis was performed on the relationship matrix of the cows, and their factor loadings were plotted on a three-dimensional diagram. According to their spatial positions in the diagram, all the cows were subdivided into five genetically distinctive subpopulations of 131 to 437 animals. Genetic diversity of the whole sub-breed, which is estimated to be 0.901, was decomposed into 0.856 and 0.045 of within-subpopulation and between-subpopulation components. Recalculation of genetic diversity after removal of one or several subpopulations from the five subpopulations suggested that three of them were genetically important for the maintenance of genetic variability of the sub-breed. Applying the core set method to all the cows, maximum attainable genetic diversity was estimated to be 0.949, and optimal genetic contributions assigned to each cow supported the previous results indicating relative importance of the three subpopulations as useful genetic materials.

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy (합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향)

  • Jeung, Won-Young;Kim, Hyun-Kyung;Lee, Jeong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2005
  • CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.

Automated Generation of Composite Web Services based on Functional Semantics (기능적 의미에 기반한 복합 웹 서비스 자동 구성)

  • Shin, Dong-Hoon;Lee, Kyong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1310-1323
    • /
    • 2008
  • Recently, many studies on automated generation of composite Web services have been done. Most of these works compose Web services by chaining their inputs and outputs, but do not consider the functional semantics. Therefore, they may construct unsatisfied composite services against users' intention. Futhermore, they have high time-complexity since every possible combinations of available services should be considered. To resolve these problems, this paper proposes a sophisticated composition method that explicitly specifies and uses the functional semantics of Web services. Specifically, A graph model is constructed to represent the functional semantics of Web services as well as the dependency among inputs and outputs. On the graph, we search core services which provide the requested function ality and additional services which transform between I/O types of the user request and the core services. Then, composite services are built from combinations of the discovered services. The proposed method improves the semantic correctness of composite services by the functional semantics of Web services, and reduces the time complexity by combinations of functionally related services.

  • PDF

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

Effects of DC Substrate Bias Power Sources and Reactant Gas Ratio on Synthesis and Tribological Properties of Ternary B-C-N Coatings (기판 바이어스 DC 전원의 종류와 반응가스 분압비가 3성분계 B-C-N 코팅막의 합성과 마찰 특성에 미치는 영향)

  • Jeong, Da-Woon;Kim, Doo-In;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.60-67
    • /
    • 2011
  • Ternary B-C-N coatings were deposited on Si(100) wafer substrate from $B_4C$ target by RF magnetron sputtering technique in $Ar+N_2+CH_4$ gas mixture. In this work, the effect of reactant gas ratio, $CH_4/(N_2+CH_4)$ on the composition, kinds and amounts of bonding states comprising B-C-N coatings were investigated using two different bias power sources of continuous and unipolar DCs. In addition, the tribological properties of coatings were studied with the composition and bonding state of coating. It was found that the substrate bias power had an effect on chemical composition, and all of the obtained coatings were nearly amorphous. Main bonding states of coatings were revealed from FTIR analyses to be h-BN, C-C, C-N, and B-C. The amount of C-C bonging mainly increased with increase of the reactant gas ratio. From our studies, both C-C and h-BN bonding states improved the tribological properties but B-C one was found to be harmful on those. The best coating from tribological points of view was found to be $BC_{1.9}N_{2.3}$ composition.