• Title/Summary/Keyword: Core breakdown

Search Result 63, Processing Time 0.028 seconds

Reliability Establishment Method of Switchyard Equipment (스위치야드 기기 신뢰도 군축방안)

  • Moon, Su-Cheol;Kim, Keron-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.51-53
    • /
    • 2007
  • The nuclear power plant uses the steam which occurs from reactor and T/G the drive. By the T/G in consequence of the fact that the electricity which is produced the power and supplies in transmission system. But, recently the transmission and generation system are placed under deregulation situation from domestic and foreign, the maintenance control is difficult with the accident or the breakdown which relates is increasing. Hereupon, considering for effect to the reactor core against trip element which it does apply a probability concept from the NRC of the United States and it study and the recognition for the importance of the switchyard which is a power equipment which will be revaluated. Hereupon using the American example, the reliability establishment method which is suitable in domestic and it searches it does.

  • PDF

Analysis on the Electric Characteristics of Natural Ester after Accelerated Thermal Aging (식물성 절연유의 열 열화에 따른 전기적 특성 연구)

  • Shim, Meoung-Seop;An, Jung-Sik;Choi, Sun-Ho;Jung, Joong-Il;Kim, Nam-Ryul;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.81-81
    • /
    • 2010
  • This paper presents results of experimental investigations on natural ester regarding the breakdown strength. Aging of insulating material in a pole transformer has been studied by performing accelerated thermal aging test. Sealed aging test vessels containing copper, laminated core, Krapt paper and insulating oil(Natural oil and Mineral oil) were aged at $140^{\circ}C$ for 30days. Compared to the conventional transformer oil, electric property of the natural ester fluid is excellent.

  • PDF

A Study on the Insulating Properties of Pressboard for High Voltage Transformer Applied the Mold of Eddy Current Loss (와전류 손실을 적용한 금형으로 제조된 초고압 변압기의 프레스보드의 절연 특성 연구)

  • Suh, Wang-Byuck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.508-512
    • /
    • 2015
  • Some insulating materials are tested and analyzed with variables to obtain the reliable pressboard which is located to core and coil of high voltage transformer. The high voltage transformer is used in electrical power system and operating reliability. Optimization possibility of pressboard shape including electrical insulation performance could be achieved by analysis simulation. Using insulating pressboard, which is made by mold applied eddy current loss, it could be measured the influences of moisture content for electrical properties. As a result, it is to contribute to improve the performance and ensure the reliability of the pressboard by investigating electrical strength according to the variation oil temperature. In addition pressboard thickness is important design factor to ensure electrical strength in high voltage transformer.

A Design of Lateral Power MOS with Improved Blocking Characteristics (향상된 항복특성을 위한 수평형 파워 MOS의 설계)

  • Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • Power semiconductors are being currently used as a application of intelligent power inverters to a refrigerator, a washing machine and a vacuum cleaner as well as core parts of industrial system. The rating of semiconductor devices is an important factor in decision on the field of application and the forward blocking voltage is one of factors in decision of the rating. The Power MOS device has a merit of high input impedance, short switching time, and stability in temperature as well known. Power MOS devices are mainly used as switches in the field of power electronics, especially the on-state resistance and breakdown voltage are regarded as the most important parameters. Power MOS devices that enable a small size, a light weight, high-integration and relatively high voltage are required these days. In this paper, we proposed the new lateral power MOS which has forward blocking voltage of 250V and contains trench electrodes and verified manufactural possibility by using TSUPREM-4 that is process simulator.

  • PDF

Optimal Process Design of Super Junction MOSFET (Super Juction MOSFET의 공정 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.501-504
    • /
    • 2014
  • This paper was developed and described core-process to implement low on resistance which was the most important characteristics of SJ (super junction) MOSFET. Firstly, using process-simulation, SJ MOSFET optimal structure was set and developed its process flow chart by repeated simulation. Following process flow, gate level process was performed. And source and drain level process was similar to genral planar MOSFET, so the process was the same as the general planar MOSFET. And then to develop deep trench process which was main process of the whole process, after finishing photo mask process, we developed deep trench process. We expected that developed process was necessary to develop SJ MOSFET for automobile semiconductor.

Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications

  • Peddigari, Mahesh;Palneedi, Haribabu;Hwang, Geon-Tae;Ryu, Jungho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.1-23
    • /
    • 2019
  • Dielectric materials with inherently high power densities and fast discharge rates are particularly suitable for pulsed power capacitors. The ongoing multifaceted efforts on developing these capacitors are focused on improving their energy density and storage efficiency, as well as ensuring their reliable operation over long periods, including under harsh environments. This review article summarizes the studies that have been conducted to date on the development of high-performance dielectric ceramics for employment in pulsed power capacitors. The energy storage characteristics of various lead-based and lead-free ceramics belonging to linear and nonlinear dielectrics are discussed. Various strategies such as mechanical confinement, self-confinement, core-shell structuring, glass incorporation, chemical modifications, and special sintering routes have been adopted to tailor the electrical properties and energy storage performances of dielectric ceramics. In addition, this review article highlights the challenges and opportunities associated with the development of pulsed power capacitors.

Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application (전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향)

  • H.S. Lee;S.B. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

Development of High-Efficient Organic Solar Cell With $TiO_2$/NiO Hole-Collecting Layers Using Atomic Layer Deposition

  • Seo, Hyun Ook;Kim, Kwang-Dae;Park, Sun-Young;Lim, Dong Chan;Cho, Shinuk;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.157-158
    • /
    • 2013
  • Organic solar cell was fabricated using one-pot deposition of a mixture of NiO nanoparticles, P3HT and PCBM. In the presence of NiO, the photovoltaic performance was slightly increased comparing to that of the device without NiO. When $TiO_2$ thin films with a thickness of 2~3 nm was prepared on NiO nanoparticles using atomic layer deposition, the power conversion efficiency was increased by a factor 2.5 with respect to that with bare NiO. Moreover, breakdown voltage of the film consisting of NiO, P3HT, and PCBM on indium tin oxide was increased by more than 1 V in the presence of $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidized on NiO surfaces, and $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidzed on NiO surfaces, and $TiO_2$ shell heavily reduced oxidation of S at oxide/P3HT interfaces. Oxidized S atoms can most likely act as carrier generation sites and recombination centers within the depletion region, decreasing breakdown voltage and performance of organic solar cells. Our result shows that fabrication of various core-shell nanostruecutres of oxides by atomic layer deposition with controlled film thickness can be of potential importance for fabricating highly efficient organic solar cells.

  • PDF

Effect Analysis of WBS-Based Technology Research and Analysis Methodology for Defense Technology Planning : With 'A' Missile System (국방기술기획을 위한 WBS 기반 기술 조사·분석 방법론의 효과분석 : 'A' 미사일 무기체계 중심으로)

  • Kim, Mi Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.211-217
    • /
    • 2020
  • Technology planning in the defense field aims to develop core technologies in order to develop weapon systems to satisfy the force integration period by researching and analyzing necessary technologies for weapon systems. In the past, core technology development projects were conducted by deriving core technology based on the main required operational capability. But in this case, there is the limitation that technologies which are necessary to develop weapon systems but do not directly affect required operational capability, such as system integration technologies, are not considered. In this paper, we propose a work breakdown structure-based technology research and analysis methodology that prevents vacant technologies by identifying core technologies that must be secured for the development of weapon systems at the component level. With the proposed methodology, it is possible to identify technologies that must be acquired to realize the required operational capability of systems or which must be secured even they do not affect the required operational capability.

The Prevention Countermeasure against Breakdown of GIS using the Preventive Diagnostic Technology (예방진단기술을 활용한 GIS 고장예방대책)

  • Choi, Jong-Soo;Kim, Jong-Gu;Park, Jun-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.423-427
    • /
    • 2009
  • In the circumstances which a highly reliable operation in electric power facilities of extra high voltage and large capacity is needed, the importance of a preventive diagnostic technology is growing large day and day. The settlement of a preventive diagnostic technology for optimization and efficient management on the electric power facilities like GIS enable the reduce of repair fee, the improvement of safety and the systematic management of electric power facilities. The remaining life prediction of facilities will play a decisive role as a core technology of a preventive diagnostics in the future. And so it is necessary a continuous research and concern for the development of a preventive diagnostic technology hereafter.

  • PDF