• 제목/요약/키워드: Core Principle

검색결과 362건 처리시간 0.026초

이중모드 광섬유내에서의 전 광(All-optical) 모드 변환 스위칭 (All-optical Internodal Switching in Two-mode Waveguide)

  • 박희갑
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1989년도 제4회 파동 및 레이저 학술발표회 4th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.119-122
    • /
    • 1989
  • An intermodal switch based on optically-induced (through optical Kerr effect) periodic coupling in a two-mode waveguide is described and demonstrated. A high power pump beam injected into the two modes of the waveguide produced a periodic modulation of the refractive index profile with a period of modal beat length. this causes an intermodal coupling of the prove beam. The operating principle was successfully demonstrated in an elliptical core two-mode fiber with a counter-propagating pump-probe scheme.

  • PDF

NEAR INFRARED SPECTROSCOPY, A POWERFUL TECHNIQUE IN HUMAN SKIN STUDY : PART I METHOD RELIABILITY AND INFLUENTIAL PARAMETERS

  • Snieder, Marchel;Wiedemann, Sophie;Hansen, Wei G.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3101-3101
    • /
    • 2001
  • Near Infrared spectroscopy (NIR) used on human skin measurement was explored in the past decade. Many publications in different journals and magazines discussed the feasibility of the NIR technique for cosmetic product property studies. Based upon the results of pioneers, we have pursued some work of the NIR instrument coupled with a probe module for skin measurement in vivo and vitro. In part I of this paper, the specific Near Infrared spectroscopy instrument stability, human subject conditions and other parameters, which could affect the measurements reproducibility are discussed. Second derivative NIR spectra and Principle Components Analysis (PCA) are utilised for data interpretation. In part II of this paper, the relationship of human skin moisture and ageing, the gender information and finally, the discovery of penetration depth of NIR incident light on skin are reported. A theoretical penetration depth calculation equation is proposed. In part III, the study results of a couple of commercial skin care products effect will be described. The skin lotions were applied on human skin (in vivo) in order to exam the NIR feasibility to monitor the changes of moisture level. The results are consistently positive. From our primary study, it can conclude that the NIR is potentially a very powerful instrument for skin condition diagnostics, either for cosmetic and/or for medication purposes.

  • PDF

영광 3, 4호기 원자로 유동 모델 시험 (YGN 3 & 4 Reactor Flow Model Test)

  • Lee, Kye-Bock;Im, In-Young;Lee, Byung-Jin;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.340-351
    • /
    • 1991
  • l/5.03 축소 원자로 모델을 이용하여 원자력 발전소 영광 3,4호기를 위한 유동시험을 수행하였다. 이 유동 시험의 목적은 ABB-CE사의 System 80과 영광 3,4호기 원자로 크기의 상대적인 차이로 인해 발생하는 원자로 용기내의 수력학적 영향을 평가하는 것이다. 유동 모델은 상사성 원리에 따라 설계하였다. 이 시험에서 얻은 결과는 노심 입구 유량 분포, 노심 출구 압력 분포, 원자로 입구 노즐에서부터 출구 노즐까지 유동로를 따른 부분 구간 및 전체 압력 손실이다. 이 데이터들은 노심의 열적 여유도 분석에 필요한 입력 자료 제공과 해석적 수력설계 방법의 검증에 이용하게 된다.

  • PDF

유한요소법에 의한 변압기의 자속분포 해석에 관한 연구 (Study on the magnetic flux distribution of transformer by the use of finite element method)

  • 임달호;현동석;이철직
    • 전기의세계
    • /
    • 제29권4호
    • /
    • pp.247-255
    • /
    • 1980
  • In this study, an application of Finite Element Method which, in principle, based on variational calculus has been presented for the two-dimensional analysis of magnetic flux distribution in the shell type core of single phase transformer. The necessary stationarity condition of energy functional and boundary conditions were determined under the assumptions that the electromagnetic field considered is stationary and that the effect of eddy current is negligible. In the process of application the domain of magnetic field was divided into triangle subsectional elements and then the matrix equations were constructed for the respective triangular element and for those of all after the manipulation of minimization process to the vector potential of magnetic field at the each vertex of the element. Furthermore the numerical computation for the equations was guided by the Gaussian Elimination Methods. As the results obtained, it is found that the aspect of magnetic flux distribution inside the core as well as the leakage flux profile at the vicinity of the inner leg of the core is not much different from the well-known distribution profile of magnetic flux, however, the procedure shows to possess the merit of the uniquely deterministic nature for the flux distribution at the desired points.

  • PDF

Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core

  • Magnucki, Krzysztof;Jasion, Pawel;Szyc, Waclaw;Smyczynski, Mikolaj Jan
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.325-337
    • /
    • 2014
  • The strength and buckling problem of a five layer sandwich beam under axial compression or bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical model of the field of displacements, which includes a share effect and a bending moment, is presented. The system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the basis of the principle of stationary total potential energy. The equations are analytically solved and the critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the case of bended beam the static analysis has been performed to obtain the stress distribution across the height of the beam. For the axially compressed beam the buckling analysis was carried out to determine the buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare the results of the theoretical, numerical and experimental analyses.

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.