• Title/Summary/Keyword: Core Network slicing

Search Result 9, Processing Time 0.023 seconds

Comparative Analysis on Network Slicing Techniques in 5G Environment (5G 환경에서의 네트워크 슬라이싱 연구 비교 분석)

  • A Reum Ko;Ilhwan Ji;Hojun Jin;Seungho Jeon;Jung Taek Seo
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.84-96
    • /
    • 2023
  • Network slicing refers to a technology that divides network infrastructure into multiple parts. Network slicing enables flexible network configuration while minimizing the physical resources required for network division. For this reason, network slicing technology has recently been developed and introduced in a form suitable for the 5G environment for efficient management of large-scale network environments. However, systematic analysis of network slicing research in the 5G environment has not been conducted, resulting in a lack of systematic analysis of the technology. Accordingly, in this paper, we provide insight into network slicing technology in the 5G network environment by conducting a comparative analysis of the technology. In this study's comparative analysis, 13 literatures on network slicing in the 5G environment was identified and compared and analyzed through a systematic procedure. As a result of the analysis, three network slicing technologies frequently used for 5G networks were identified: RAN (radio access network) slicing, CN (core network) slicing, and E2E (end-to-end) sliding. These technologies are mainly used for network services. It was confirmed that research is being conducted to achieve quality improvement and network isolation. It is believed that the results of this comparative analysis study can contribute to 6G technology research as a future direction and utilization plan for network slicing research.

  • PDF

5G 망에서의 Network Slicing 요구사항 및 제공 구조

  • Kim, Sang-Hun
    • Information and Communications Magazine
    • /
    • v.33 no.6
    • /
    • pp.9-17
    • /
    • 2016
  • 본고에서는 5G 망에서의 서비스 요구사항을 만족하기 위한 구조로서 Network Slicing 구조를 제안하고 세부 적용방안을 기술한다. 이를 위해 5G 서비스를 우선 정의하고 그에 따른 서비스 요구사항을 도출한 후, 이러한 요구사항과 관련해 현재 망의 문제점에 대해 기술하고 망 개선을 위한 기술 요구사항을 정립한다. 특히, 5G에서의 중요성이 높아질 것으로 전망되고 있는 'Network Slicing'의 필요성 및 개념에 대해 서술한다. Network Slicing에 대한 제조사들의 솔루션 동향, 3GPP 등 단체의 표준화 동향, APN 방식의 P-LTE/DECOR/RAN Slicing 등 관련 기술의 발전 동향을 포함한 5G Network Slicing 주요 기술 동향에 대해서 알아본다. 또한, Slice의 관리 및 BSS/OSS등과의 연계를 위한 통신사업자 입장에서의 플랫폼 요구사항을 정리한다. 5G Network Slicing을 충족하기 위한 주요 기술로 C/U plane 분리구조, 범용 서버를 활용한 NFV/SDN, Edge 기반의 분산된 수평적 네트워크, 데이터 오프로딩 및 지연시간 절감을 위한 Edge Computing 등을 들 수 있고 효율적인 자원 관리를 위한 Orchestration 등에 대해서도 알아본다. 이를 기반으로 하여 사업자 입장에서 5G Core Network 기술을 선도함은 물론이고 향후, 조기 상용화를 위한 진화 방향을 제시하고자 한다.

Test Bed for Radio Access Network Slicing Using FlexRAN Controller (FlexRAN 제어기를 이용한 무선 접근 망 슬라이싱을 위한 테스트베드)

  • Ahmed, Jahanzeb;Song, Wang-Cheol;Ahn, Khi Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.211-212
    • /
    • 2019
  • Slicing Radio Access Network (RAN) can help in effectively utilizing the network bandwidth and to better manage the increasing traffic over interent. RAN slicing system discussed in this paper is based on an open-source slicing mechanism in which we write a JSON configuration file for slicing policy and send it to the FlexRAN controller. FlexRAN controlls the core networks (CNs) through OAI-RAN on the evolved packet core (EPC) component of this system. Each CN is responsible for handling a saperate RAN slice. The type of internet traffic is identified by the FlexRAN crontroller and is sent to the respective CN through OAI-RAN. CN handles the traffic according to the allocated bandwidth and in this way the internet traffic is sliced inside the EPC component.

Efficient Slice Allocation Method using Cluster Technology in Fifth-Generation Core Networks

  • Park, Sang-Myeon;Mun, Young-Song
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2019
  • The explosive growth of data traffic and services has created cost challenges for networks. Studies have attempted to effectively apply network slicing in fifth generation networks to provide high speed, low latency, and various compatible services. However, in network slicing using mixed-integer linear programming, the operation count increases exponentially with the number of physical servers and virtual network functions (VNFs) to be allocated. Therefore, we propose an efficient slice allocation method based on cluster technology, comprising the following three steps: i) clustering physical servers; ii) selecting an appropriate cluster to allocate a VNF; iii) selecting an appropriate physical server for VNF allocation. Solver runtimes of the existing and proposed methods are compared, under similar settings, with respect to intra-slice isolation. The results show that solver runtime decreases, by approximately 30% on average, with an increase in the number of physical servers within the cluster in the presence of intra-slice isolation.

Resource Allocation Method using Credit Value in 5G Core Networks (5G 코어 네트워크에서 Credit Value를 이용한 자원 할당 방안)

  • Park, Sang-Myeon;Mun, Young-Song
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.515-521
    • /
    • 2020
  • Recently, data traffic has exploded due to development of various industries, which causes problems about losing of efficiency and overloaded existing networks. To solve these problems, network slicing, which uses a virtualization technology and provides a network optimized for various services, has received a lot of attention. In this paper, we propose a resource allocation method using credit value. In the method using the clustering technology, an operation for selecting a cluster is performed whenever an allocation request for various services occurs. On the other hand, in the proposed method, the credit value is set by using the residual capacity and balancing so that the slice request can be processed without performing the operation required for cluster selection. To prove proposed method, we perform processing time and balancing simulation. As a result, the processing time and the error factor of the proposed method are reduced by about 13.72% and about 7.96% compared with the clustering method.

Resource Management in 5G Mobile Networks: Survey and Challenges

  • Chien, Wei-Che;Huang, Shih-Yun;Lai, Chin-Feng;Chao, Han-Chieh
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.896-914
    • /
    • 2020
  • With the rapid growth of network traffic, a large number of connected devices, and higher application services, the traditional network is facing several challenges. In addition to improving the current network architecture and hardware specifications, effective resource management means the development trend of 5G. Although many existing potential technologies have been proposed to solve the some of 5G challenges, such as multiple-input multiple-output (MIMO), software-defined networking (SDN), network functions virtualization (NFV), edge computing, millimeter-wave, etc., research studies in 5G continue to enrich its function and move toward B5G mobile networks. In this paper, focusing on the resource allocation issues of 5G core networks and radio access networks, we address the latest technological developments and discuss the current challenges for resource management in 5G.

Standardization Trends in Network Slicing and Management Technologies of 5G Core Network (5G 네트워크 슬라이싱 및 네트워크 관리 기술 표준화 동향)

  • Lee, S.I.;Lee, J.H.;Shin, M.K.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.2
    • /
    • pp.62-70
    • /
    • 2017
  • 5G 네트워크 기술은 4G LTE 이동 통신 기술의 후속 기술로서, ITU-R, ITU-T, NGMN, 3GPP 등의 표준화 그룹을 중심으로 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템 및 네트워크 구조를 설계 중이다. 특히 다양한 5G 융합 서비스를 효율적으로 제공하기 위해 서비스 및 네트워크 자원의 독립성 및 유연성을 지향하는 네트워크 슬라이싱을 적용하고, ETSI NFV 네트워크 기능 가상화 기술을 포함하는 네트워크 관리 구조를 도입하고자 한다. 본고에서는 5G 네트워크 슬라이싱 기술 및 5G 네트워크 관리 기술의 개념 및 요구사항을 분석하고, 이에 대해 3GPP SA WG2 및 SA WG5에서 진행 중인 표준화 현황을 소개한다.

  • PDF

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.

Threat Diagnostic Checklists of Security Service in 5G Communication Network Virtualization Environment (5G 통신 네트워크 가상화 환경에서 보안 서비스의 위협 진단 체크리스트)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.144-150
    • /
    • 2021
  • The purpose of this paper is to review the direction of the slicing security policy, which is a major consideration in the context of standardization in 5G communication network security, to derive security vulnerability diagnosis items, and to present about analyzing and presenting the issues of discussion for 5G communication network virtualization. As for the research method, the direction of virtualization security policy of 5G communication network of ENISA (European Union Agency for Cybersecurity), a European core security research institute, and research contents such as virtualization security policy and vulnerability analysis of 5G communication network from related journals were used for analysis. In the research result of this paper, the security structure in virtualization security of 5G communication network is arranged, and security threats and risk management factors are derived. In addition, vulnerability diagnosis items were derived for each security service in the risk management area. The contribution of this study is to summarize the security threat items in 5G communication network virtualization security that is still being discussed, to be able to gain insights of the direction of European 5G communication network cybersecurity, and to derive vulnerabilities diagnosis items to be considered for virtualization security of 5G communication network. In addition, the results of this study can be used as basic data to develop vulnerability diagnosis items for virtualization security of domestic 5G communication networks. In the future, it is necessary to study the detailed diagnosis process for the vulnerability diagnosis items of 5G communication network virtualization security.