• Title/Summary/Keyword: Core Alloy

Search Result 222, Processing Time 0.027 seconds

A Study on Design of Linear Motor for Maglev for High Efficiency (자기부상열차 추진용 리니어모터 효율향상 설계연구)

  • Kim, Youn-Hyun;Kim, Ki-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.561-566
    • /
    • 2016
  • In this paper, effective design method of linear induction motor(LIM) for Maglev is proposed in order to maximize system efficiency of Maglev. For the high system efficiency of Maglev, it is important to minimize weight of traction motor. Light weight design by changing materials of core and winding is conducted without changing volume of LIM. For the silicon steel core of primary part for magnetic flux path, iron-cobalt alloy steel with high magnetic saturation characteristic compared to silicon steel is suggested. Moreover, aluminium winding with light weight instead of copper winding is wounded in the widen slot area due to the high magnetic saturation level. For the verification of performance of proposed model, the characteristics are analyzed by using finite element method(FEM).

The present technical condition and a trend of research for soft magnetic materials (연자성재료의 기술현황과 연구동향)

  • 양계준;박용관
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.76-92
    • /
    • 1996
  • 본 고에서는 대표적인 연자성재료인 Soft 페라이트, 퍼멀로이, 센더스트와 비정질 자성합금계의 특성과 용도를 살펴봄으로써 현재의 기술현황을 알아보고 그 문제점 해결과 특성개선을 위한 연구동향에 대하여 검토하여 보기로 한다. 또한 연자성재료 일반에 걸쳐 용도별 분류와 각 응용기술 분야에서의 기술동향 및 전망에 대하여 소개하고자 한다.

  • PDF

Microstructure Evolution and Tensile Properties of Al-Mg Alloy Containing a High Content of Mg by Biaxial Alternative Forging (고함량의 Mg을 함유한 Al-Mg 합금의 이축교번단조 변형에 따른 미세조직 및 인장특성 변화)

  • Shin, Y.C.;Ha, S.H.;Yoon, Y.O.;Kim, S.K.;Choi, H.J.;Hyun, K.H.;Hyun, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.361-367
    • /
    • 2019
  • Microstructure evolution and tensile properties of Al-8mass%Mg alloy casting billet by biaxial alternative forging were investigated in this study. An alternative forging system tailored in this study was used to allow continuous strain accumulations on the alloy workpiece. A finite element (FE) simulation results revealed that the strain was mainly concentrated in the core and that the shear bands developed into a form with an X shape in the cross-section of workpiece after the alternative forging using octangular rod shaped dies. With increasing the forging passes, it was observed that the Al-8mass%Mg alloy workpieces were significantly deformed, and cracks began to form and propagate on the both ends of the forged workpieces after five passes at room temperature. In as-forged microstructures taken by microscopes, twins, clustering of dislocations, and fine subgrains were found. Tensile strengths of the forged specimens showed significant increases depending on the number of forging passes, and a trade-off relationship was observed between the elongation and strength. At room temperature and 100℃ the workpieces showed similar behaviors in microstructural evolution and tensile properties depending on forging passes, while the increase range in strength was reduced at 200℃.

Tribological Behavior of Fe-based Bulk Amorphous Alloy in a Distilled Water Environment (수중환경에서 Fe계 벌크 비정질 합금의 트라이볼로지적 거동)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.295-302
    • /
    • 2014
  • The tribological behavior of an Fe-based bulk amorphous alloy while sliding against a AISI 304 disc is investigated using a unidirectional pin-on-disc type tribometer in dry and distilled water environments. The rod-shaped bulk pins are fabricated by suction casting. The crystallinities of the bulk amorphous alloys before and after the friction tests are determined by X-ray diffraction. The friction coefficient and specific wear rate of the amorphous pin in the water environment are found to be twice and thrice as much as in the dry environment at a low applied pressure, respectively. However, at a higher pressure, the friction coefficient and specific wear rate are 0.4 and 1.02 mg/(Nm/s), respectively, in the water environment. A microstructure analysis shows that the worn surface of the alloy is characterized by delamination from the smooth friction surface, and thus delamination is the main wear mechanism during the friction test in dry sliding environment. In contrast, brittle fracture morphologies are apparent on the friction surface formed in distilled water environment. For the sample tested at a lower sliding speed, the XPS data from the oxide layer are similar to those of the pure element with weak suboxide peaks. For higher sliding speeds, all the main sharp peaks representing the core level binding energies are shifted to the oxide region.

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

STRESS DISTRIBUTION OF PERIODONTALLY INVOLVED TEETH RESTORED WITH VAR10US POSTS -THREE-DIMENSIONAL FINITE ELEMENT STUDY- (치주 지지가 감소된 소구치에서 포스트가 치근 응력 분포에 미치는 영향에 대한 3차원 유한요소법적 연구)

  • Jeong, Hye-Jin;Yoo, Jae-Heung;Oh, Nam-Sik;Kim, Han-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.567-578
    • /
    • 2007
  • Statement of problem: The endodontically treated tooth is generally restored with post and core, owing to the brittle and the loss of large amount of tooth structure. As periodontal treatment was developed, there are many cases that periodontally involved teeth used in prosthetic treatment. Purpose: The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post materials and the amount of remaining alveolar bone height. Material and method: The 3-dimensional finite element models of mandible 1st premolars were divided into six types according to the various amount of remaining alveolar bone and post type. All types were modeled using equal length, diameter and shape of the post. Three types of post and core materials were used: prefabricated titaniumpost and amalgam core, prefabricated stainless steel post and amalgam core, and cast gold post and core. 300 Newton force was applied to functional cusp of mandible 1st premolar. Results: The results were as follows: First, there was no apparent difference in the pattern of stress distribution according to the alveolar bone condition concentrate on the post middle area. Second, there was difference in pattern of stress distribution according to the core materials, gold post and core generated same than amalgam core. Third, there was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. But a cast gold post and core generated the lowest maximum stress value, a stainless steel post generated the highest maximum stress value. Fourth, in the reduced alveolar bone model, maximum stress value is 1.5 times than that of the normal alveolar bone model. Conclusion: Within the limitations of this study, to provide minimal stress to the root with alveolar bone reduced, the post length may be as long as apical seal was not destroyed. To prevent fracture of tooth, it is rational to use gold alloy which material was good for stress distribution for post materials.