• Title/Summary/Keyword: Cord Reinforcement

Search Result 15, Processing Time 0.045 seconds

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

Studies on the Quality Reinforcement for Pneumatic Tire and Tube (Part 8) Physical properties of the experimental production of tire for SBR high contained (Tire 및 Tube의 품질보강(品質補强)에 관(關)한 연구(硏究)(제8보(第8報)) 합성(合成)고무를 다량혼용(多量混用)한 Tire 및 Tube의 시제(試製))

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Chin-Bum;Park, Chang-Ho;Hong, Chong-Myung;Im, Dong-Ho;Lee, Hai-Ryong
    • Elastomers and Composites
    • /
    • v.5 no.2
    • /
    • pp.188-194
    • /
    • 1970
  • We have studied to apply of a quantity of SBR contained high and domestic tire cord on manufacture tire. The Physical test of compounds and products, the travelling test of manufactured tires last year had revealed a good results. 1. The physical properties indicated better values than those found in the requirments of military specification. 2. Adhesion of carcass ply cord showed a good results. 3. The physical properties between 1260 d/2 nylon cord and 840d/2 nylon cord of domestic products be showed similar values and its have a results by 2-3 times than standards.

  • PDF

Pass Design of Wet-Drawing with Ultra High Speed for Steel Cord (Steel Cord 생산을 위한 초고속 습식 신선 패스 설계)

  • Hwang W. H.;Lee S. G.;Ko W. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.427-430
    • /
    • 2005
  • Improving the productivity of steel cord is required due to the increase in demand for it, even though steel cord being used as a reinforcement of a tire has been produced at multi-pass wet wire drawing process over 1000m/min. To improve the productivity, if just increase drawing speed, it causes temperature rise, fracture arisen by embrittlement during drawing process. To increase drawing speed affecting productivity, the variation of wire temperature during multi-pass wet wire drawing process is investigated in this study. In result, the multi-pass wet wire drawing process is redesigned. The redesigned wet drawing process with 27 passes efficiently controls wire temperature during drawing process. It, therefore, enables drawing process to be possible at ultra high speed with 2000m/min. It becomes possible to improve the productivity of steel cord in this paper because the increase in drawing speed could be achieved.

  • PDF

Performance Test and Finite Element Analysis of Air Spring for Automobile (승용차용 에어스프링의 유한요소해석 및 성능시험)

  • Huh, Shin;Woo, Chang-Soo;Han, Houk-Seop;Kim, Wan-Doo;Kim, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.725-731
    • /
    • 2007
  • An air spring which is a part of the suspension system of automobiles is used to reduce and absorb the vibration and the noise. Main components of the air spring are a cord reinforced rubber bellows, a canister and a piston. The performance of the air spring are depended on configurations of rubber bellows, the angle and elastic modulus of cord. The finite element analysis are executed to predict and evaluate the load capacity and the stiffness. The design variables of air spring are determined to adjust the required specifications of the air spring. Several samples of the air spring are manufactured and experimented. It is shown that the results by finite element analysis are in close agreement with the test results.

Simulation of Static Characteristics of Railway Vehicle's Airspring (철도차량용 공기 스프링의 정적 특성 시뮬레이션)

  • Heo, Sin;Gu, Jeong-Seo;U, Chang-Su;Kim, Yu-Il
    • 연구논문집
    • /
    • s.26
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, we performed the static analysis of a cord-reinforced rubber airspring and generated the three-dimensional half-symmetry model which use the finite-strain shell elements to model the airbag. the three-dimensional hydrostatic fluid elements to model the air-filled cavity, and the rebar elements to model the multi-ply nylon reinforcement of airbag. In addition, a three-dimensional rigid surface is used to define the contact between the airspring and metal bead. The air inside the airspring cavity has been modeled as a compressible fluid satisfying the ideal gas law. The conclusions of this study are as follows. 1) In the pressurization step of analysis, we could predict the change of vertical reaction force, cavity volume and pressure within the airspring. 2) In the second step of analyzing vertical static stiffness, the increase of the vertical load increases the vertical stiffness. 3) In case of changing the angle of nylon cord, the increase the angle of nylon cord increases the vertical stiffness.

  • PDF

A Study on the Method of Residual Stress Relaxation during Wire Drawing and Evaluation of Residual Stress Using Nano Indentation Test (신선 시 선재의 잔류응력 완화 방법에 관한 연구 및 나노 압입 시험을 이용한 잔류응력 평가)

  • Ko Dae-Cheol;Hwang Won-Ho;Lee Sang-Kon;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.162-169
    • /
    • 2006
  • Steel cord which is used as reinforcement in car tires is produced by wet-drawing process. Recently the quality improvement of the steel cord product is demanded by the tire market. After cold drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the cold drawn wire, it is very important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the cold drawn wire. The aim of this study is to propose residual stress relaxation method in the drawn wire using FE-analysis. The validity of the analysis results was verified by Nano indentation test.

Studies on the Quality Reinforcement for Pneumatic Tire and Tube (Part 5) Physical Properties for Tire Cord and Butyl Tube (Tire 및 Tube의 품질보강(品質補强)에 관(關)한 연구(硏究) (제5보(第5報)) Tire Cord 및 Butyl Tube의 물성(物性)에 대(對)하여)

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Chin-Bum;Park, Chang-Ho;Hong, Chong-Myung;Im, Dong-Ho
    • Elastomers and Composites
    • /
    • v.4 no.1
    • /
    • pp.89-93
    • /
    • 1969
  • 1. Physical properties of various nylon cords in a tire, both of home and foreign products are studied. The experimental data for home nylon cords appeared to be quite satisfactory for use in a tire compared with foreign nylon cords with respect to its tenacity, elongation, shrinkage and contraction. 2. Excellent results have been obtained with 50 phr carbon in butyl-carbon compounding.

  • PDF

A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC) (광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발)

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2002
  • Small diameter composite helical springs (CS) are developed using a hot plated mold for reinforcement of common optical fiber jumper cord (OJC). The outer diameters of the springs are about 2 ~ 3mm. These springs are inserted into the OJC to protect the damage of an optical fiber from the sudden lateral load. Two types of CS, Yarn type (Y-type) and Band type (B-type), are manufactured to compare the effectiveness for the damage protection. The experimental works were conducted to check the effect of the CS covered around OJC on the mechanical and optical properties. Experimental observations show a considerable effect on the flexural resistance, hence slowing down the deterioration of the optical power by the internal damage of the fiber. Obtained main results are as follows: (1) Y-type CS has better protection abilities to lateral loading than B-types. (2) Compared with bare OJC, CS-OJC has less power loss under the loading. (3) OJC covered with the composite coil spring has a possibility for a practical usage with full fruits.

Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis (유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Lee, Byung-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF