• Title/Summary/Keyword: Copper pipe

Search Result 176, Processing Time 0.035 seconds

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method (전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구)

  • Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Comparison of Biofilm Formed on Stainless Steel and Copper Pipe Through the Each Process of Water Treatment Plant (정수처리 공정 단계별 스테인리스관과 동관에 형성된 생물막 비교)

  • Kim, Geun-Su;Min, Byung-Dae;Park, Su-Jeong;Oh, Jung-Hwan;Cho, Ik-Hwan;Jang, Seok-Jea;Kim, Ji-Hae;Park, Sang-Min;Park, Ju-Hyun;Chung, Hyen-Mi;Ahn, Tae-Young;Jheong, Weonhwa
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2013
  • Biofilm formed on stainless and copper in water treatment plant was investigated for sixteen weeks. Biofilm reactor was specially designed for this study. It was similar to that of a real distribution pipe. Raw water, coagulated, settled, filtered and treated water were used in this study. The average number of heterotrophic bacteria counts was $1.6{\times}10^4CFU/ml$, $5.8{\times}10^3CFU/ml$, $1.8{\times}10^3CFU/ml$, $1.3{\times}10^2CFU/ml$, 1 CFU/ml, respectively. Density of biofilm bacteria formed on stainless and copper pipes in raw, coagulated and settled water increased above $2.9{\times}10^3CFU/cm^2$ within second weeks while more biofilm bacteria counts were found on the stainless pipe than on the copper pipe. In case of filtered water (free residue chlorine 0.44 mg/L), there was no significant difference in the number of biofilm bacteria on both pipes and biofilm bacteria below $18CFU/cm^2$ were detected on both pipe materials after fifth weeks. Biofilm bacteria were not detected on both pipe materials in treated water (free residue chlorine 0.88 mg/L). According to the results of DGGE analysis, Sphingomonadacae was a dominant species of biofilm bacteria formed on the stainless pipe while the copper pipe had Bradyrhizobiaceae and Sphingomonadaceae as dominant bands. In case of filtered water, a few bands (similar to Propionibacterium sp., Sphingomonas sp., Escherichia sp., and etc.) that have 16S rRNA sequences were detected in biofilm bacteria formed on both pipes after fifth weeks. Stainless pipe had higher species richness and diversity than the copper pipe.

Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Rhi, Seok-Ho;Yoo, Seong-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • This paper is to study the heat transfer performance of the copper-water heat pipe with screen wicks. Recently, the semiconductor capacity of an electronic unit becomes larger, but its size becomes much smaller. As a result, a high- performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling waters and the mesh number of screen wicks. The distilled water was used as a working fluid. Based on the experimental results, when the copper-water heat pipe of 6mm diameter is used at the top heat mode, the heat transfer performance of 100 mesh 2 layers heat pipe is better than that of 150 and 200 mesh. The thermal resistance of the two layers with the 100-mesh screen was 0.7-$0.8^{\circ}C$/W.

Comparative Study on Disinfection Efficiency of Chlorine and Chloramine in the Distribution Systems (배·급수계통에서 유리염소와 클로라민의 소독효과에 관한 비교연구)

  • Choi, Yong-Il;Nam, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.82-88
    • /
    • 1999
  • This study was to evaluate disinfection efficiency of chlorine and chloramine as secondary disinfectants in the distribution systems. Indicator organism, HPC in the suspended and attached were measured for copper, galvanized steel, PVC, and carbon steel pipes. For suspended microorganism, the PVC pipe was markedly dense among the assessed pipe materials. The attached microorganism was markedly equivalent roughness of pipe materials. In copper and galvanized pipes, chloramine was more effective that free chlorine to disinfect suspended microorganism in the contact time of 2 hours. The contact time for the 99% inactivation of suspended microorganism by chloramine was longer than that of free chlorine. Regardless of pipe materials, chloramine was effective on both disinfection efficiency and 99% inactivation time for attached microorganism. In conclusion, chloramine which is good disinfectant for long contact time was recommended as secondary disinfectant in distribution system.

  • PDF

Evaluation of Residual Stress in the U-shaped Copper Pipe (U자형 동관의 잔류응력 평가)

  • Kim S.Y.;Kim H.I.;Scok C.S.;Lee J.K.;Mo J.Y.;Park D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.622-626
    • /
    • 2005
  • The Residual stress is stress at the inside of materials after plastic deformation. Certainly, this residual stress have an effect on fatigue life. Therefore, it is very important that understanding residual stress at the inside of materials. But in case of U-shaped Pipe that it is dealt with a mailer in this paper, distribution of residual stress is very complicated and exactly become unknown caused by difficulty of measurement. Then, in this paper, we are evaluated residual stress at in the inside of materials by finite clement method program and verified validity by test.

  • PDF

The Development of Micro Wiring System for Micro Active Endoscope (박막 공정을 이용한 초소형 내시경의 MicroWiring System의 개발)

  • Jung, Seok;Chang, Jun-Keun;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.362-365
    • /
    • 1997
  • In the field of Micro-Mechanics, it has been known diffcult to integrate the micro-machine with sensor and source line for the conventional copper line cnanot be used in compact and small size. We developed a system to make thethin copper film as a connect line on the poyurethane pipe (2mm in diameter) by the evaporation technique. This system consists of an evaporation chamber two long branches, substrate hoider and a Linear-Rotary motion feed feedthrough. The results showed that thin copper film coated polyurethanc pipe could be applied th the small medical devices such as the micro active endoscope.

  • PDF

Analysis of Heat Transport Limitations of the Heat Pipe for Structural Characteristics of Sintered Metal Wick (소결윅의 구조적 특성에 따른 히트파이프의 열수송 한계 분석)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.97-103
    • /
    • 2005
  • In this paper, effects on the heat transport limitation of heat pipe by the wick structural factors were theoretically analyzed for the sintered-copper wick heat pipe. Uniformity of particle size and sintering process were acted as dominant factors on the pore distribution and wick porosity, and small deviations of the wick thickness and the pore size greatly affected the heat transport limitations of the heat pipe. Especially, slight variations of the wick thickness, mean particle radius and capillary radius along the vapor temperatures and inclination angles remarkably changed the capillary limitation of the heat pipe.