• Title/Summary/Keyword: Copper metallization

Search Result 63, Processing Time 0.03 seconds

Chalcogenide 기반 메모리 소자의 스위칭 특성 향상을 위한 광학패턴 형성

  • Park, Ju-Hyeon;Han, Chang-Jo;Gang, Ji-Su;Lee, Dal-Hyeon;Nam, Gi-Hyeon;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.185-185
    • /
    • 2010
  • Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of electrical nanoscale pathways in thin films of solid electrolytes. In this study, we investigated the nature of thin films formed by the photo doping of copper ions into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ions transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Effects of chemical reaction on the polishing rate and surface planarity in the copper CMP

  • Kim, Do-Hyun;Bae, Sun-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Chemical mechanical planarization (CMP) is the polishing process enabled by both chemical and mechanical actions. CMP is used in the fabrication process of the integrated circuits to achieve adequate planarity necessary for stringent photolithography depth of focus requirements. And recently copper is preferred in the metallization process because of its low resistivity. We have studied the effects of chemical reaction on the polishing rate and surface planarity in copper CMP by means of numerical simulation solving Navier-Stokes equation and copper diffusion equation. We have performed pore-scale simulation and integrated the results over all the pores underneath the wafer surface to calculate the macroscopic material removal rate. The mechanical abrasion effect was not included in our study and we concentrated our focus on the transport phenomena occurring in a single pore. We have observed the effects of several parameters such as concentration of chemical additives, relative velocity of the wafer, slurry film thickness or ash)tract ratio of the pore on the copper removal rate and the surface planarity. We observed that when the chemical reaction was rate-limiting step, the results of simulation matched well with the experimental data.

Application of a Selective Emitter Structure for Ni/Cu Plating Metallization Crystalline Silicon Solar Cells (Selective Emitter 구조를 적용한 Ni/Cu Plating 전극 결정질 실리콘 태양전지)

  • Kim, Min-Jeong;Lee, Jae-Doo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.575-579
    • /
    • 2010
  • The technologies of Ni/Cu plating contact is attributed to the reduced series resistance caused by a better contact conductivity of Ni with Si and the subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading was combined with the lower resistance of a metal silicide contact and an improved conductivity of the plated deposit. This improves the FF (fill factor) as the series resistance is reduced. This is very much requried in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A Selective emitter structure with highly dopeds regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing In this paper the formation of a selective emitter, and the nickel silicide seed layer at the front side metallization of silicon cells is considered. After generating the nickel seed layer the contacts were thickened by Cu LIP (light induced plating) and by the formation of a plated Ni/Cu two step metallization on front contacts. In fabricating a Ni/Cu plating metallization cell with a selective emitter structure it has been shown that the cell efficiency can be increased by at least 0.2%.

Fabrication of the Printed Circuit Board by Direct Photosensitive Etch Resist Patterning (감광성 에칭 레지스트의 잉크젯 인쇄를 이용한 인쇄회로 기판 제작)

  • Park, Sung-Jun;Lee, Ro-Woon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.97-103
    • /
    • 2007
  • A novel selective metallization process to fabricate the fine conductive line based on inkjet printing has been investigated. Recently, Inkjet printing has been widely used in flat panel display, electronic circuits, biochips and bioMEMS because direct inkjet printing is an alternative and cost-effective technology for patterning and fabricating objects directly from design without masks. The photosensitive etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity at ambient temperature. A piezoelectric-driven inkjet printhead is used to dispense 20-30 ${\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. Repeatability of circuitry fabrication is closely related to the formation of steady droplets, adhesion between etching resist and copper substrate. Therefore, the ability to form small and stable droplets and surface topography of the copper surface and chemical attack must be taken into consideration for fine and precise patterns. In this study, factors affecting the pattern formation such as adhesion strength, etching mechanism, UV curing have been investigated. As a result, microscale copper patterns with tens of urn high have been fabricated.

Characteristics of Molybdenum Nitride Diffusion Barrier for Copper Metallization (Cu 금속배선을 위한 Molybdenum Nitride 확산 방지막 특성)

  • Lee, Jeong-Yeop;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.626-631
    • /
    • 1996
  • Reactive dc magnetron sputtering 법을 이용하여 증착한 molybdenum mitride 박막의 Cu 확산 방지막 특성을 조사하였다. Cu 확산 방지막으로서 molybdenum nitride 박막의 열적안정성을 관찰하기 위하여 molybdenum nitride 박막 위에 Cu를 evaporation 법으로 증착하고 진공 열처리하였다. Cu/r-Mo2N/si 구조는 $600^{\circ}C$, 30분간 열처리 시까지 안정하였다. 확산 방지막의 파괴는 $650^{\circ}C$, 30분간 열처리 시부터 격자 확산(lattice diffusion)이나 입계(grain boundary)과 결함(defect)을 통한 확산에 의해 나타나기 시작하였고, 이 때 molybdenum silicide과 copper silicide의 형성에 기인된 것으로 생각되었다. 열처리 이후 Cu/r-Mo2N/Si 사이의 상호반응이 증가하였다. 이는 Rutherford backscattering spectrometry, Auger electron spectroscopy 그리고 Nomarski microscopy 등의 분석을 통해 조사되었다.

  • PDF

Copper, aluminum based metallization for display applications (표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성)

  • 김형택;배선기
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

Adhesion improvement between metal and ceramic substrate by using ISG process (ISG법에 의한 금속과 세라믹기판과의 밀착력 향상)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.709-716
    • /
    • 1999
  • Ceramic is select for an alternative substrate material for high-speed circuits due to its low-thermal expansion. As, in this study, ceramic was prepared by ISG (interlayer sol-gel) process using metal salts and a metal alkoxide as the starting materials. Generally ceramic substrate is used electroless copper plating for the metallization. But it has been indicate weakely the adhesion strength between the substrate and copper layer. Therefore, this research, using the ISG process on the preparation of homogeneous and possible preparation at law temperature fabricated sol solution. Using of the dip coating method was coated for the purpose of giving the anchoring effect on the coating layer and enhancing the adhesion strength between the $Al_2$O$_3$ substrate and copper layer. This study examined primary the characteristic of the sol making condition and differential thermal analysis (DTA) X-ray diffraction (XRD) were mearsured to identify the crystal phase of heat treatment specimens. The morphology of the coated films were studied by scanning electron microscopy(SEM). As a resurt, XRD analysis was obtained patterns of $\alpha$-cordierite after heat-treatment about 2 hours at $1000^{\circ}C$. SEM analysis could have seen a large number of voids on coated film. The more contants of$ Al_2$$O_3$ Wt% was increased the more voids was advanced. Peel adhesion strength has a maximum in the contants of the TEOS:ANE of 1:0.7 mole%. In this case, adhesion strength has been measured 1150gf, peel adhesion strength were about 10 times more than uncoated of the ceramics film.

  • PDF

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Cu Metallization for Giga Level Devices Using Electrodeposition (전해 도금을 이용한 기가급 소자용 구리배선 공정)

  • Kim, Soo-Kil;Kang, Min-Cheol;Koo, Hyo-Chol;Cho, Sung-Ki;Kim, Jae-Jeong;Yeo, Jong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.94-103
    • /
    • 2007
  • The transition of interconnection metal from aluminum alloy to copper has been introduced to meet the requirements of high speed, ultra-large scale integration, and high reliability of the semiconductor device. Since copper, which has low electrical resistivity and high resistance to degradation, has different electrical and material characteristics compared to aluminum alloy, new related materials and processes are needed to successfully fabricate the copper interconnection. In this review, some important factors of multilevel copper damascene process have been surveyed such as diffusion barrier, seed layer, organic additives for bottom-up electro/electroless deposition, chemical mechanical polishing, and capping layer to introduce the related issues and recent research trends on them.

Effects of DC Biases and Post-CMP Cleaning Solution Concentrations on the Cu Film Corrosion

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.276-280
    • /
    • 2010
  • Copper(Cu) as an interconnecting metal layer can replace aluminum (Al) in IC fabrication since Cu has low electrical resistivity, showing high immunity to electromigration compared to Al. However, it is very difficult for copper to be patterned by the dry etching processes. The chemical mechanical polishing (CMP) process has been introduced and widely used as the mainstream patterning technique for Cu in the fabrication of deep submicron integrated circuits in light of its capability to reduce surface roughness. But this process leaves a large amount of residues on the wafer surface, which must be removed by the post-CMP cleaning processes. Copper corrosion is one of the critical issues for the copper metallization process. Thus, in order to understand the copper corrosion problems in post-CMP cleaning solutions and study the effects of DC biases and post-CMP cleaning solution concentrations on the Cu film, a constant voltage was supplied at various concentrations, and then the output currents were measured and recorded with time. Most of the cases, the current was steadily decreased (i.e. resistance was increased by the oxidation). In the lowest concentration case only, the current was steadily increased with the scarce fluctuations. The higher the constant supplied DC voltage values, the higher the initial output current and the saturated current values. However the time to be taken for it to be saturated was almost the same for all the DC supplied voltage values. It was indicated that the oxide formation was not dependent on the supplied voltage values and 1 V was more than enough to form the oxide. With applied voltages lower than 3 V combined with any concentration, the perforation through the oxide film rarely took place due to the insufficient driving force (voltage) and the copper oxidation ceased. However, with the voltage higher than 3 V, the copper ions were started to diffuse out through the oxide film and thus made pores to be formed on the oxide surface, causing the current to increase and a part of the exposed copper film inside the pores gets back to be oxidized and the rest of it was remained without any further oxidation, causing the current back to decrease a little bit. With increasing the applied DC bias value, the shorter time to be taken for copper ions to be diffused out through the copper oxide film. From the discussions above, it could be concluded that the oxide film was formed and grown by the copper ion diffusion first and then the reaction with any oxidant in the post-CMP cleaning solution.