• Title/Summary/Keyword: Copper current collector

Search Result 15, Processing Time 0.028 seconds

Estimation of Power Collector Wear Considering the Operating Environment of a Maglev (자기부상열차의 주행 환경을 고려한 집전자 마모도 평가)

  • Lee, Kyoung-bok;Ma, Sang-kyeon;Lim, Jae-won;Park, Do-young;Son, Jeong-ryong;Kang, Hyun-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • The wear of the third track power collector is one of the essential check factors for safe train operation. Rapid wear of the current collector accelerates the line of the catenary. In addition, the arc generated when the catenary line is turned off causes a malfunction in the minute portion of the catenary line, thereby shortening the life of the catenary line. In this paper, to analyze the mechanical wear of the current collector during driving according to the environmental factor of the Maglev(magnetic levitation train), it was divided into dry season and wet season. the wear of metallized collector, copper alloy collector and carbon collector were measured and compared with each other. The wear rate was measured according to the position of the wire, the position of the power collector and the position per hour. Microscopic photographs of the cross section and surface of the power collector were measured. The electrical currents of the metallized collector, copper alloy collector and carbon collector were measured.

Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode

  • Choi, Hongsuk;Kim, Subin;Song, Hayong;Suh, Seokho;Kim, Hyeong-Jin;Eom, KwangSup
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.249-255
    • /
    • 2021
  • In this work, we proposed a facile method to fabricate the three-dimensional porous copper current collector (3D Cu CC) for a Si-dominant anode in a Li-ion battery (LiB). The 3D Cu CC was prepared by combining chemical etching and thermal reduction from a planar copper foil. It had a porous layer employing micro-sized Cu balls with a large surface area. In particular, it had strengthened attachment of Si-dominant active material on the CC compared to a planar 2D copper foil. Moreover, the increased contact area between a Si-dominant active material and the 3D Cu could minimize contact loss of active materials from a CC. As a result of a battery test, Si-dominant active materials on 3D Cu showed higher cyclic performance and rate-capability than those on a conventional planar copper foil. Specifically, the Si electrode employing 3D Cu exhibited an areal capacity of 0.9 mAh cm-2 at the 300th cycles (@ 1.0 mA cm-2), which was 5.6 times higher than that on the 2D copper foil (0.16 mAh cm-2).

Degradation Behavior and Resistivity Changes After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell (시효처리된 연료전지 집전판용 Matte 주석도금 동판의 고온열화 거동과 비저항변화)

  • Kim, Ju-Han;Kim, Jae-Hun;Koo, Kyung-Wan;Keum, Young-Bum;Jeong, Kwi-Seong;Ko, Haeng-Jin;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1559-1565
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, Cu6Sn5(${\mu}$) and Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface. Cu6Sn5(${\mu}$) intermetallics layer gradually changed Cu3Sn(${\varepsilon}$). Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only Cu3Sn(${\varepsilon}$) intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

A Self-standing and Binder-free Electrodes Fabricated from Carbon Nanotubes and an Electrodeposited Current Collector Applied in Lithium-ion Batteries

  • Luais, Erwann;Mery, Adrien;Abou-Rjeily, John;Sakai, Joe;Tran-Van, Francois;Ghamouss, Fouad
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, we report the preparation of a flexible, self-standing and binder-free carbon nanotubes (CNTs) electrode with an electro-generated current collector. The copper current collector layer was electrodeposited on the backside of CNTs self-standing film obtained by a simple filtration process. The obtained CNTs-Cu assembly was used as a negative electrode in Li-ion batteries exhibiting good performance along with proving its applicability in flexible batteries.

Resistivity Changes and Intermetallic Growth After Thermal Aging of Matte Tin-Plated Copper Sheet for Current Collector in Fuel Cell (연료전지 집전판용 주석도금 동판의 열 열화에 따른 금속간화합물 성장 및 비저항 변화)

  • Kim, Jae-Hun;Kim, Ju-Han;Han, Sang-Ok;Koo, Kyung-Wan;Keum, Young-Bum;Jeong, Kwi-Seong;Ko, Haeng-Zin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2067_2068
    • /
    • 2009
  • Resistivity changes and intermetallic growth after thermal aging of Matter tin-plated copper sheet for current collector in fuel cell were investigated to survey the diffusion of Cu into Sn in interface and surface. The results show that the intermetallic growth and resistivity depended on thermal aging temperature and dwell time. In Sn plate on a Cu substrate, $Cu_6Sn_5({\mu})$ and $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface. $Cu_6Sn_5({\mu})$ intermetallics layer gradually changed $Cu_3Sn({\varepsilon})$. Moreover Cu get through Sn layer and it was diffused in the surface at $200^{\circ}C$. On the other hand, only $Cu_3Sn({\varepsilon})$ intermetallics layer were formed at plate/substrate interface at $300^{\circ}C$. Consequently, the intermetallics formation, thermal condition and oxidation of surface, causes increase in the resistivity of Tin-plated copper sheet.

  • PDF

Technology of selective absorber coatings on solar collectors using black chromium+3 sulfate acid on substrates (흑색 황산3가크롬을 이용한 태양열 흡열판 선택흡수막 도금기술)

  • Ohm, Tae-In;Yeo, Woon-Tack;Kim, Dong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • One of the most important factors that have a large influence on performance of the solar water heater system is performance of the solar collector, more detailedly, coating technology on the surface of the solar collector, which can provide high solar absorptance and low emittance. The core of the coating technology is to coat solar selective surfaces. In this study, various performance experiments are carried out using $Cr_2(SO_4)_3{\cdot}15H_2O$ coating technology. Here, IGBT(Insulated Gate Bipolar Transistor) of 5000A-15V was used as the surface processing rectifier which can stably output power and also can control voltage and current. The plating solution mainly contains black chrome$^{+3}$ concentration, H-y Conductivity, N-u Complex, NF Additive and NC-2 Wetter. Before applying the black chrome coating on the copper plate, optimal conditions are provided by using various preprocessing methods such as removal of fat, activation, electrolytic polishing, nickel strike, copper sulfate plating and bright neckel plating, and then the automatic continuous coating experiment are performed according to plating time and cathode current density. In the experiment, after the removal of fat, chemical polishing, nickel strike and activation processes as the preprocessing methods, the black chrome coating was performed in a plate solution temperature of $28^{\circ}C$ and a cathode current density of $18A/cm^2$ for 90 seconds. The thickness of chrome and nickel on the coated plate is $0.389{\mu}m$, $159{\mu}m$ respectively. As a result of the coating experiment, it showed the most excellent performance having a high solar absorptance of 98% and a low emittance of $5{\pm}1%$ when the black chrome surface had a thickness of $0.398{\mu}m$.

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte (유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성)

  • 임정환;도칠훈;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries (리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성)

  • Park, Jong-Wan;Ascencio Jorge A.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.