Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.5.249

Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode  

Choi, Hongsuk (School of Materials Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Subin (School of Materials Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Song, Hayong (School of Materials Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Suh, Seokho (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST))
Kim, Hyeong-Jin (Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST))
Eom, KwangSup (School of Materials Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Corrosion Science and Technology / v.20, no.5, 2021 , pp. 249-255 More about this Journal
Abstract
In this work, we proposed a facile method to fabricate the three-dimensional porous copper current collector (3D Cu CC) for a Si-dominant anode in a Li-ion battery (LiB). The 3D Cu CC was prepared by combining chemical etching and thermal reduction from a planar copper foil. It had a porous layer employing micro-sized Cu balls with a large surface area. In particular, it had strengthened attachment of Si-dominant active material on the CC compared to a planar 2D copper foil. Moreover, the increased contact area between a Si-dominant active material and the 3D Cu could minimize contact loss of active materials from a CC. As a result of a battery test, Si-dominant active materials on 3D Cu showed higher cyclic performance and rate-capability than those on a conventional planar copper foil. Specifically, the Si electrode employing 3D Cu exhibited an areal capacity of 0.9 mAh cm-2 at the 300th cycles (@ 1.0 mA cm-2), which was 5.6 times higher than that on the 2D copper foil (0.16 mAh cm-2).
Keywords
Lithium-ion battery; Copper current collector; Silicon-dominant anode; Porous structure; degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Shin and E. Cho, Agglomeration Mechanism and a Protective Role of Al2O3 for Prolonged Cycle Life of Si Anode in Lithium-Ion Batteries, Chemistry of Materials, 30, 3233 (2018). Doi: https://doi.org/10.1021/acs.chemmater.8b00145   DOI
2 C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, and Y.-G. Guo, Accommodating Lithium into 3d Current Collectors with a Submicron Skeleton Towards Long-Life Lithium Metal Anodes, Nature communications, 6, 1 (2015). Doi: https://doi.org/10.1038/ncomms9058   DOI
3 U. Chang, J. T. Lee, J.-M. Yun, B. Lee, S. W. Lee, H.-I. Joh, K. Eom, and T. F. Fuller, In Situ Self-Formed Nanosheet Mos3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode, ACS nano, 13, 1490 (2018). Doi: https://doi.org/10.1021/acsnano.8b07191   DOI
4 K. Eom, J. T. Lee, M. Oschatz, F. Wu, S. Kaskel, G. Yushin, and T. F. Fuller, A Stable Lithiated Silicon-Chalcogen Battery Via Synergetic Chemical Coupling between Silicon and Selenium, Nature communications, 8, 13888 (2017). Doi: https://doi.org/10.1038/ncomms13888   DOI
5 D. Deng, M. G. Kim, J. Y. Lee, and J. Cho, Green Energy Storage Materials: Nanostructured Tio 2 and Sn-Based Anodes for Lithium-Ion Batteries, Energy & Environmental Science, 2, 818 (2009). Doi: https://doi.org/10.1039/B823474D   DOI
6 J.-M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, (2011). Doi: https://doi.org/10.1142/9789814317665_0024
7 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries, Science, 334, 75 (2011). Doi: https://doi.org/10.1126/science.1209150   DOI
8 G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, The Lithium-Ion Battery: State of the Art and Future Perspectives, Renewable and Sustainable Energy Reviews, 89, 292 (2018). Doi: https://doi.org/10.1016/j.rser.2018.03.002   DOI
9 Y.-L. Kim, Y.-K. Sun, and S.-M. Lee, Enhanced Electrochemical Performance of Silicon-Based Anode Material by Using Current Collector with Modified Surface Morphology, Electrochimica Acta, 53, 4500 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.050   DOI
10 J. Liu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries, Angewandte Chemie, 127, 9632 (2015). Doi: https://doi.org/10.1002/ange.201503150   DOI
11 H. Shang, Z. Zuo, L. Yu, F. Wang, F. He, and Y. Li, Low-Temperature Growth of All-Carbon Graphdiyne on a Silicon Anode for High-Performance Lithium-Ion Batteries, Advanced Materials, 30, 1801459 (2018). Doi: https://doi.org/10.1002/adma.201801459   DOI
12 S.-H. Moon, S.-J. Kim, M.-C. Kim, J.-Y. So, J.-E. Lee, Y.-K. Shin, W.-G. Bae, and K.-W. Park, Stress-Relieved Si Anode on a Porous Cu Current Collector for High-Performance Lithium-Ion Batteries, Materials Chemistry and Physics, 223, 152 (2019). Doi: https://doi.org/10.1016/j.matchemphys.2018.10.042   DOI
13 D. Ma, H. Zhou, J. Zhang, and Y. Qian, Controlled Synthesis and Possible Formation Mechanism of Leaf-Shaped Sns2 Nanocrystals, Materials Chemistry and Physics, 111, 391 (2008). Doi: https://doi.org/10.1016/j.matchemphys.2008.04.035   DOI
14 P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, G. Wang, and D. Cao, One-Step Synthesis of Copper Compounds on Copper Foil and Their Supercapacitive Performance, Rsc Advances, 5, 36656 (2015). Doi: https://doi.org/10.1039/C5RA04889C   DOI
15 Y. Han, P. Qi, J. Zhou, X. Feng, S. Li, X. Fu, J. Zhao, D. Yu, and B. Wang, Metal-Organic Frameworks (Mofs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries, ACS applied materials & interfaces, 7, 26608 (2015). Doi: https://doi.org/10.1021/acsami.5b08109   DOI
16 X. Wen, W. Zhang, and S. Yang, Synthesis of Cu (Oh) 2 and Cuo Nanoribbon Arrays on a Copper Surface, Langmuir, 19, 5898 (2003). Doi: https://doi.org/10.1021/la0342870   DOI
17 J. A. Rodriguez, J. Y. Kim, J. C. Hanson, M. Perez, and A. I. Frenkel, Reduction of Cuo in H 2: In Situ TimeResolved Xrd Studies, Catalysis Letters, 85, 247 (2003). Doi: https://doi.org/10.1023/A:1022110200942   DOI
18 S. Choi, T.-w. Kwon, A. Coskun, and J. W. Choi, Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries, Science, 357, 279 (2017). Doi: https://doi.org/ 10.1126/science.aal4373   DOI
19 J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan, Cyclability Study of Silicon-Carbon Composite Anodes for Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy, Electrochimica Acta, 56, 3981 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.014   DOI
20 K. Ogata, E. Salager, C. Kerr, A. Fraser, C. Ducati, A. J. Morris, S. Hofmann, and C. P. Grey, Revealing Lithium-Silicide Phase Transformations in Nano-Structured Silicon-Based Lithium Ion Batteries Via in Situ Nmr Spectroscopy, Nature communications, 5, 3217 (2014). Doi: https://doi.org/10.1038/ncomms4217   DOI